对python实现二维函数高次拟合的示例详解

yipeiwu_com5年前Python基础

在参加“数据挖掘”比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进。

在本次“数据挖掘”比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰。现在想想也挺欣慰自己在这段时间里接受新知识的能力。关于神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识。

# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
import csv
from scipy.stats import norm
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model

''''' 数据导入 '''
def loadDataSet(fileName):
 dataMat = []
 labelMat = []
 csvfile = file(fileName, 'rb')
 reader = csv.reader(csvfile)
 b = 0
 for line in reader:
  if line[50] is '':
   b += 1
  else:
   dataMat.append(float(line[41])/100*20+30)
   labelMat.append(float(line[25])*100)


 csvfile.close()
 print "absence time number: %d" % b
 return dataMat,labelMat

xArr,yArr = loadDataSet('data.csv')
x = np.array(xArr)
y = np.array(yArr)
# x = np.arange(0, 1, 0.002)
# y = norm.rvs(0, size=500, scale=0.1)
# y = y + x ** 2

def rmse(y_test, y):
 return sp.sqrt(sp.mean((y_test - y) ** 2))

def R2(y_test, y_true):
 return 1 - ((y_test - y_true) ** 2).sum() / ((y_true - y_true.mean()) ** 2).sum()

def R22(y_test, y_true):
 y_mean = np.array(y_true)
 y_mean[:] = y_mean.mean()
 return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true)


plt.scatter(x, y, s=5)
#分别进行1,2,3,6次拟合
degree = [1, 2,3, 6]
y_test = []
y_test = np.array(y_test)

for d in degree:
 #普通
 # clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
 #     ('linear', LinearRegression(fit_intercept=False))])
 # clf.fit(x[:, np.newaxis], y)

 # 岭回归
 clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
     ('linear', linear_model.Ridge())])
 clf.fit(x[:, np.newaxis], y)
 y_test = clf.predict(x[:, np.newaxis])

 print('多项式参数%s' %clf.named_steps['linear'].coef_)
 print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f' %
   (rmse(y_test, y),
   R2(y_test, y),
   R22(y_test, y),
   clf.score(x[:, np.newaxis], y)))

 plt.plot(x, y_test, linewidth=2)

plt.grid()
plt.legend(['1', '2','3', '6'], loc='upper left')
plt.show()

以上这篇对python实现二维函数高次拟合的示例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas重新生成索引的方法

在数据处理的过程中,出现了这样的问题,筛选某些数据,出现索引从600多开始,但是我希望这行数据下标从0开始。 这个时候,我想到的是: df.reindex(range(length)...

django-rest-swagger的优化使用方法

如下所示: requirements.txt django==1.10.5 djangorestframework==3.5.3 django-rest-swagger==2.1...

如何基于Python制作有道翻译小工具

如何基于Python制作有道翻译小工具

这篇文章主要介绍了如何基于Python制作有道翻译小工具,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 该工具主要是利用了爬虫,爬取w...

Python selenium根据class定位页面元素的方法

Python selenium根据class定位页面元素的方法

在日常的网页源码中,我们基于元素的id去定位是最万无一失的,id在单个页面中是不会重复的。但是实际工作中,很多前端开发人员并未给每个元素都编写id属性。通常一段html代码如下: &...

python3 实现调用串口功能

python调用串口,写入数据 #!/usr/bin/python3 import serial def serialTest(): try: port = "C...