对python指数、幂数拟合curve_fit详解

yipeiwu_com6年前Python基础

1、一次二次多项式拟合

一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。

2、指数幂数拟合curve_fit

使用scipy.optimize 中的curve_fit,幂数拟合例子如下:

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
 
def func(x, a, b, c):
 return a * np.exp(-b * x) + c
 
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
ydata = y + 0.2 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(func, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [func(i, popt[0],popt[1],popt[2]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下面是原始数据和拟合曲线:

python指数、幂数拟合curve_fit

下面是指数拟合例子:

def fund(x, a, b):
 return x**a + b
 
xdata = np.linspace(0, 4, 50)
y = fund(xdata, 2.5, 1.3)
ydata = y + 4 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(fund, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [fund(i, popt[0],popt[1]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下图是原始数据和拟合曲线:

python指数、幂数拟合curve_fit

以上这篇对python指数、幂数拟合curve_fit详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django migrations 默认目录修改的方法教程

如何使用 migrations的使用非常简单: 修改model, 比如增加field, 然后运行 python manager.py makemigrations 你的mmod...

Python决策树和随机森林算法实例详解

Python决策树和随机森林算法实例详解

本文实例讲述了Python决策树和随机森林算法。分享给大家供大家参考,具体如下: 决策树和随机森林都是常用的分类算法,它们的判断逻辑和人的思维方式非常类似,人们常常在遇到多个条件组合问题...

python通过pil为png图片填充上背景颜色的方法

本文实例讲述了python通过pil为png图片填充上背景颜色的方法。分享给大家供大家参考。具体分析如下: png图片有些是没有背景颜色,如果希望以单色(比如白色)填充背景,可以使用下面...

Python中.join()和os.path.join()两个函数的用法详解

Python中有.join()和os.path.join()两个函数,具体作用如下:    . join():    连接字符串数组。将...

Python with语句和过程抽取思想

python中的with语句使用于对资源进行访问的场合,保证不管处理过程中是否发生错误或者异常都会执行规定的__exit__(“清理”)操作,释放被访问的资源,比如有文件读写后自动关闭、...