Python实现二维曲线拟合的方法

yipeiwu_com6年前Python基础

如下所示:

from numpy import *
import numpy as np
import matplotlib.pyplot as plt

plt.close()
fig=plt.figure()
plt.grid(True)
plt.axis([0,10,0,8])

#列出数据
point=[[1,2],[2,3],[3,6],[4,7],[6,5],[7,3],[8,2]]
plt.xlabel("X")
plt.ylabel("Y")

#用于求出矩阵中各点的值
XSum = 0.0
X2Sum = 0.0
X3Sum = 0.0
X4Sum = 0.0
ISum = 0.0
YSum = 0.0
XYSum = 0.0
X2YSum = 0.0


#列出各点的位置
for i in range(0,len(point)):

 xi=point[i][0]
 yi=point[i][1]
 plt.scatter(xi,yi,color="red")
 show_point = "("+ str(xi) +","+ str(yi) + ")"
 plt.text(xi,yi,show_point)

 XSum = XSum+xi
 X2Sum = X2Sum+xi**2
 X3Sum = X3Sum + xi**3
 X4Sum = X4Sum + xi**4
 ISum = ISum+1
 YSum = YSum+yi
 XYSum = XYSum+xi*yi
 X2YSum = X2YSum + xi**2*yi

# 进行矩阵运算
# _mat1 设为 mat1 的逆矩阵
m1=[[ISum,XSum, X2Sum],[XSum, X2Sum, X3Sum],[X2Sum, X3Sum, X4Sum]]
mat1 = np.matrix(m1)
m2=[[YSum], [XYSum], [X2YSum]]
mat2 = np.matrix(m2)
_mat1 =mat1.getI()
mat3 = _mat1*mat2

# 用list来提取矩阵数据
m3=mat3.tolist()
a = m3[0][0]
b = m3[1][0]
c = m3[2][0]
# 绘制回归线
x = np.linspace(0,10)
y = a + b*x + c*x**2
plt.plot(x,y)
show_line = "y="+str(a)+"+("+str(b)+"x)"+"+("+str(c)+"x2)";
plt.title(show_line)
plt.show()

以上这篇Python实现二维曲线拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django基础三之视图函数的使用方法

Django基础三之视图函数的使用方法

一 Django的视图函数view 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应。 响应可以是一张网页的HTML内容,一个重定向...

python:pandas合并csv文件的方法(图书数据集成)

python:pandas合并csv文件的方法(图书数据集成)

数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析。 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInf...

Python中矩阵库Numpy基本操作详解

NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作。 下面对numpy中的操作进行总结。 numpy包含...

python 利用已有Ner模型进行数据清洗合并代码

我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- from kashgari.corpus import DataReader import re f...

Python列表生成式与生成器操作示例

本文实例讲述了Python列表生成式与生成器操作。分享给大家供大家参考,具体如下: 列表生成式:能够用来创建list的生成式 比如想要生成类似[1*1,2*2,3*3,…..100*10...