Python实现二维曲线拟合的方法

yipeiwu_com6年前Python基础

如下所示:

from numpy import *
import numpy as np
import matplotlib.pyplot as plt

plt.close()
fig=plt.figure()
plt.grid(True)
plt.axis([0,10,0,8])

#列出数据
point=[[1,2],[2,3],[3,6],[4,7],[6,5],[7,3],[8,2]]
plt.xlabel("X")
plt.ylabel("Y")

#用于求出矩阵中各点的值
XSum = 0.0
X2Sum = 0.0
X3Sum = 0.0
X4Sum = 0.0
ISum = 0.0
YSum = 0.0
XYSum = 0.0
X2YSum = 0.0


#列出各点的位置
for i in range(0,len(point)):

 xi=point[i][0]
 yi=point[i][1]
 plt.scatter(xi,yi,color="red")
 show_point = "("+ str(xi) +","+ str(yi) + ")"
 plt.text(xi,yi,show_point)

 XSum = XSum+xi
 X2Sum = X2Sum+xi**2
 X3Sum = X3Sum + xi**3
 X4Sum = X4Sum + xi**4
 ISum = ISum+1
 YSum = YSum+yi
 XYSum = XYSum+xi*yi
 X2YSum = X2YSum + xi**2*yi

# 进行矩阵运算
# _mat1 设为 mat1 的逆矩阵
m1=[[ISum,XSum, X2Sum],[XSum, X2Sum, X3Sum],[X2Sum, X3Sum, X4Sum]]
mat1 = np.matrix(m1)
m2=[[YSum], [XYSum], [X2YSum]]
mat2 = np.matrix(m2)
_mat1 =mat1.getI()
mat3 = _mat1*mat2

# 用list来提取矩阵数据
m3=mat3.tolist()
a = m3[0][0]
b = m3[1][0]
c = m3[2][0]
# 绘制回归线
x = np.linspace(0,10)
y = a + b*x + c*x**2
plt.plot(x,y)
show_line = "y="+str(a)+"+("+str(b)+"x)"+"+("+str(c)+"x2)";
plt.title(show_line)
plt.show()

以上这篇Python实现二维曲线拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python快速排序算法实例分析

Python快速排序算法实例分析

本文实例讲述了Python快速排序算法。分享给大家供大家参考,具体如下: 快速排序的时间复杂度是O(NlogN) 算法描述: ① 先从序列中取出一个数作为基准数 ② 分区过程, 将比这个...

Django model select的多种用法详解

Django model select的多种用法详解

《Django model update的各种用法介绍》文章介绍了Django model的各种update操作,这篇文章就是她的姊妹篇,详细介绍Django model select的...

python executemany的使用及注意事项

使用executemany对数据进行批量插入的话,要注意一下事项: #coding:utf8 conn = MySQLdb.connect(host = “localhost”, u...

Python中Numpy mat的使用详解

前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似。(mat与matrix等同) 基本操作 >>> m= np.mat([1...

利用Python的Django框架中的ORM建立查询API

 摘要 在这篇文章里,我将以反模式的角度来直接讨论Django的低级ORM查询方法的使用。作为一种替代方式,我们需要在包含业务逻辑的模型层建立与特定领域相关的查询API,这些在...