Python实现二维曲线拟合的方法

yipeiwu_com5年前Python基础

如下所示:

from numpy import *
import numpy as np
import matplotlib.pyplot as plt

plt.close()
fig=plt.figure()
plt.grid(True)
plt.axis([0,10,0,8])

#列出数据
point=[[1,2],[2,3],[3,6],[4,7],[6,5],[7,3],[8,2]]
plt.xlabel("X")
plt.ylabel("Y")

#用于求出矩阵中各点的值
XSum = 0.0
X2Sum = 0.0
X3Sum = 0.0
X4Sum = 0.0
ISum = 0.0
YSum = 0.0
XYSum = 0.0
X2YSum = 0.0


#列出各点的位置
for i in range(0,len(point)):

 xi=point[i][0]
 yi=point[i][1]
 plt.scatter(xi,yi,color="red")
 show_point = "("+ str(xi) +","+ str(yi) + ")"
 plt.text(xi,yi,show_point)

 XSum = XSum+xi
 X2Sum = X2Sum+xi**2
 X3Sum = X3Sum + xi**3
 X4Sum = X4Sum + xi**4
 ISum = ISum+1
 YSum = YSum+yi
 XYSum = XYSum+xi*yi
 X2YSum = X2YSum + xi**2*yi

# 进行矩阵运算
# _mat1 设为 mat1 的逆矩阵
m1=[[ISum,XSum, X2Sum],[XSum, X2Sum, X3Sum],[X2Sum, X3Sum, X4Sum]]
mat1 = np.matrix(m1)
m2=[[YSum], [XYSum], [X2YSum]]
mat2 = np.matrix(m2)
_mat1 =mat1.getI()
mat3 = _mat1*mat2

# 用list来提取矩阵数据
m3=mat3.tolist()
a = m3[0][0]
b = m3[1][0]
c = m3[2][0]
# 绘制回归线
x = np.linspace(0,10)
y = a + b*x + c*x**2
plt.plot(x,y)
show_line = "y="+str(a)+"+("+str(b)+"x)"+"+("+str(c)+"x2)";
plt.title(show_line)
plt.show()

以上这篇Python实现二维曲线拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于python的Tkinter实现一个简易计算器

基于python的Tkinter实现一个简易计算器

本文实例介绍了基于python的Tkinter实现简易计算器的详细代码,分享给大家供大家参考,具体内容如下 第一种:使用python 的 Tkinter实现一个简易计算器 #codi...

详解python中递归函数

函数执行流程 def foo1(b,b1=3): print("foo1 called",b,b1) def foo2(c): foo3(c) print...

Tornado实现多进程/多线程的HTTP服务详解

用tornado web服务的基本流程 1.实现处理请求的Handler,该类继承自tornado.web.RequestHandler,实现用于处理请求的对应方法如:get、post...

详解【python】str与json类型转换

在写接口测试框架时。避免不了数据类型的转换,比如强制转换string类型,比如转json类型 str转json python字符串转json对象,需要使用json模块的loads函数...

python接口自动化(十六)--参数关联接口后传(详解)

python接口自动化(十六)--参数关联接口后传(详解)

简介 大家对前边的自动化新建任务之后,接着对这个新建任务操作了解之后,希望带小伙伴进一步巩固胜利的果实,夯实基础。因此再在沙场实例演练一下博客园的相关接口。我们用自动化发随笔之后,要想接...