Python关于excel和shp的使用在matplotlib

yipeiwu_com6年前Python基础

关于excel和shp的使用在matplotlib

  • 使用pandas 对excel进行简单操作
  • 使用cartopy 读取shpfile 展示到matplotlib中
  • 利用shpfile文件中的一些字段进行一些着色处理
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @File : map02.py
# @Author: huifer
# @Date : 2018/6/28
import folium
import pandas as pd
import requests
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import zipfile
import cartopy.io.shapereader as shaperead
from matplotlib import cm
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import os
dataurl = "http://image.data.cma.cn/static/doc/A/A.0012.0001/SURF_CHN_MUL_HOR_STATION.xlsx"
shpurl = "http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip"
def download_file(url):
  """
  根据url下载文件
  :param url: str
  """
  r = requests.get(url, allow_redirects=True)
  try:
    open(url.split('/')[-1], 'wb').write(r.content)
  except Exception as e:
    print(e)
def degree_conversion_decimal(x):
  """
  度分转换成十进制
  :param x: float
  :return: integer float
  """
  integer = int(x)
  integer = integer + (x - integer) * 1.66666667
  return integer
def unzip(zip_path, out_path):
  """
  解压zip
  :param zip_path:str
  :param out_path: str
  :return:
  """
  zip_ref = zipfile.ZipFile(zip_path, 'r')
  zip_ref.extractall(out_path)
  zip_ref.close()
def get_record(shp, key, value):
  countries = shp.records()
  result = [country for country in countries if country.attributes[key] == value]
  countries = shp.records()
  return result
def read_excel(path):
  data = pd.read_excel(path)
  # print(data.head(10)) # 获取几行
  # print(data.ix[data['省份']=='浙江',:].shape[0]) # 计数工具
  # print(data.sort_values('观测场拔海高度(米)',ascending=False).head(10))# 根据值排序
  # 判断经纬度是什么格式(度分 、 十进制) 判断依据 %0.2f 是否大于60
  # print(data['经度'].apply(lambda x:x-int(x)).sort_values(ascending=False).head()) # 结果判断为度分保存
  # 坐标处理
  data['经度'] = data['经度'].apply(degree_conversion_decimal)
  data['纬度'] = data['纬度'].apply(degree_conversion_decimal)
  ax = plt.axes(projection=ccrs.PlateCarree())
  ax.set_extent([70, 140, 15, 55])
  ax.stock_img()
  ax.scatter(data['经度'], data['纬度'], s=0.3, c='g')
  # shp = shaperead.Reader('ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp')
  # # 抽取函数 州:国家
  # city_list = [country for country in countries if country.attributes['ADMIN'] == 'China']
  # countries = shp.records()
  plt.savefig('test.png')
  plt.show()
def gdp(shp_path):
  """
  GDP 着色图
  :return:
  """
  shp = shaperead.Reader(shp_path)
  cas = get_record(shp, 'SUBREGION', 'Central Asia')
  gdp = [r.attributes['GDP_MD_EST'] for r in cas]
  gdp_min = min(gdp)
  gdp_max = max(gdp)
  ax = plt.axes(projection=ccrs.PlateCarree())
  ax.set_extent([45, 90, 35, 55])
  for r in cas:
    color = cm.Greens((r.attributes['GDP_MD_EST'] - gdp_min) / (gdp_max - gdp_min))
    ax.add_geometries(r.geometry, ccrs.PlateCarree(),
             facecolor=color, edgecolor='black', linewidth=0.5)
    ax.text(r.geometry.centroid.x, r.geometry.centroid.y, r.attributes['ADMIN'],
        horizontalalignment='center',
        verticalalignment='center',
        transform=ccrs.Geodetic())
  ax.set_xticks([45, 55, 65, 75, 85], crs=ccrs.PlateCarree()) # x坐标标注
  ax.set_yticks([35, 45, 55], crs=ccrs.PlateCarree()) # y 坐标标注
  lon_formatter = LongitudeFormatter(zero_direction_label=True)
  lat_formatter = LatitudeFormatter()
  ax.xaxis.set_major_formatter(lon_formatter)
  ax.yaxis.set_major_formatter(lat_formatter)
  plt.title('GDP TEST')
  plt.savefig("gdb.png")
  plt.show()
def run_excel():
  if os.path.exists("SURF_CHN_MUL_HOR_STATION.xlsx"):
    read_excel("SURF_CHN_MUL_HOR_STATION.xlsx")
  else:
    download_file(dataurl)
    read_excel("SURF_CHN_MUL_HOR_STATION.xlsx")
def run_shp():
  if os.path.exists("ne_10m_admin_0_countries"):
    gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp")
  else:
    download_file(shpurl)
    unzip('ne_10m_admin_0_countries.zip', "ne_10m_admin_0_countries")
    gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp")
if __name__ == '__main__':
  # download_file(dataurl)
  # download_file(shpurl)
  # cas = get_record('SUBREGION', 'Central Asia')
  # print([r.attributes['ADMIN'] for r in cas])
  # read_excel('SURF_CHN_MUL_HOR_STATION.xlsx')
  # gdp()
  run_excel()
  run_shp()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

在Django中使用Sitemap的方法讲解

sitemap 是你服务器上的一个XML文件,它告诉搜索引擎你的页面的更新频率和某些页面相对于其它页面的重要性。 这个信息会帮助搜索引擎索引你的网站。 例如,这是 Django 网站(h...

python threading模块操作多线程介绍

python是支持多线程的,并且是native的线程。主要是通过thread和threading这两个模块来实现的。thread是比较底层的模块,threading是对thread做了一...

int在python中的含义以及用法

Python int() 函数 描述 int() 函数用于将一个字符串或数字转换为整型。 语法 以下是 int() 方法的语法: class int(x, base=10) 参...

python生成IP段的方法

python生成IP段的方法

本文实例讲述了python生成IP段的方法。分享给大家供大家参考。具体实现方法如下: #!/usr/local/bin/python #-*- coding: UTF-8 -*- #...

Python使用pickle模块存储数据报错解决示例代码

本文研究的主要是Python使用pickle模块存储数据报错解决方法,以代码的形式展示,具体如下。 首先来了解下pickle模块 pickle提供了一个简单的持久化功能。可以将对象...