通过python的matplotlib包将Tensorflow数据进行可视化的方法

yipeiwu_com6年前Python基础

使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise


# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediction and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# important step

#initialize_all_variables已被弃用,使用tf.global_variables_initializer代替。 
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() #使plt不会在show之后停止而是继续运行
plt.show()


for i in range(1000):
  # training
  sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
  if i % 50 == 0:
    # to visualize the result and improvement
    try:
      ax.lines.remove(lines[0]) #在每一次绘图之前先讲上一次绘图删除,使得画面更加清晰
    except Exception:
      pass
    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5) #'r-'指绘制一个红色的线
    plt.pause(1) #指等待一秒钟

运行结果如下:(实际效果应该是动态的,应当使用ipython运行,使用jupyter运行则图片不是动态的)

python matplotlib包将Tensorflow数据进行可视化

注意:initialize_all_variables已被弃用,使用tf.global_variables_initializer代替。

以上这篇通过python的matplotlib包将Tensorflow数据进行可视化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch中nn.Conv1d的用法详解

pytorch中nn.Conv1d的用法详解

先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels、out_channels卡住了很久,结果发现就和conv2d是一毛一样的。话不多说,先...

Python复制目录结构脚本代码分享

引言   有个需要,需要把某个目录下的目录结构进行复制,不要文件,当目录结构很少的时候可以手工去建立,当目录结构复杂,目录层次很深,目录很多的时候,这个时候要是还是手动去建立的话,实在不...

python提取字典key列表的方法

本文实例讲述了python提取字典key列表的方法。分享给大家供大家参考。具体如下: 这段代码可以把字典的所有key输出为一个数组 d2 = {'spam': 2, 'ham': 1...

python socket网络编程之粘包问题详解

python socket网络编程之粘包问题详解

一,粘包问题详情 1,只有TCP有粘包现象,UDP永远不会粘包 你的程序实际上无权直接操作网卡的,你操作网卡都是通过操作系统给用户程序暴露出来的接口,那每次你的程序要给远程发数据时,...

Python二维数组实现求出3*3矩阵对角线元素的和示例

题目:求一个3*3矩阵对角线元素之和。 程序分析:利用双重for循环控制输入二维数组,再将a[i][i]累加后输出。 def two_dimensionalArray(self):...