python实现K近邻回归,采用等权重和不等权重的方法

yipeiwu_com5年前Python基础

如下所示:

from sklearn.datasets import load_boston
 
boston = load_boston()
 
from sklearn.cross_validation import train_test_split
 
import numpy as np;
 
X = boston.data
y = boston.target
 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)
 
print 'The max target value is: ', np.max(boston.target)
print 'The min target value is: ', np.min(boston.target)
print 'The average terget value is: ', np.mean(boston.target)
 
from sklearn.preprocessing import StandardScaler
 
ss_X = StandardScaler()
ss_y = StandardScaler()
 
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)
 
from sklearn.neighbors import KNeighborsRegressor
 
uni_knr = KNeighborsRegressor(weights = 'uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)
 
dis_knr = KNeighborsRegressor(weights = 'distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)
 
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
 
print 'R-squared value of uniform weights KNeighorRegressor is: ', uni_knr.score(X_test, y_test)
print 'The mean squared error of uniform weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
print 'The mean absolute error of uniform weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
 
print 'R-squared of distance weights KNeighorRegressor is: ', dis_knr.score(X_test, y_test)
print 'the value of mean squared error of distance weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
print 'the value of mean ssbsolute error of distance weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))

以上这篇python实现K近邻回归,采用等权重和不等权重的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python笔记(1) 关于我们应不应该继续学习python

以前面试的时候会被问到,linux熟不熟呀?对于这种问题:我总会尴尬地回答,“额..了解一点”。   然而,我大学毕业的时候,连linux的虚拟机都没装过,更别提系统熟不熟悉了。虽然我了...

python使用循环打印所有三位数水仙花数的实例

首先水仙花数是什么? 水仙花数(Narcissistic number)也被称为超完全数字不变数(pluperfect digital invariant, PPDI)、自恋数、自幂数、...

python用pickle模块实现“增删改查”的简易功能

pickle的作用: 1:pickle.dump(dict,file)把字典转为二进制存入文件. 2:pickle.load(file)把文件二进制内容转为字典 import pi...

Python随机读取文件实现实例

Python随机读取文件 代码如下 import os import random rootdir = "d:\\face\\train" file_names = [] for...

Python基于有道实现英汉字典功能

本文实例讲述了Python基于有道实现英汉字典功能的方法。分享给大家供大家参考。具体如下: import re,urllib aa="http://dict.youdao.com/s...