python实现K近邻回归,采用等权重和不等权重的方法

yipeiwu_com6年前Python基础

如下所示:

from sklearn.datasets import load_boston
 
boston = load_boston()
 
from sklearn.cross_validation import train_test_split
 
import numpy as np;
 
X = boston.data
y = boston.target
 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)
 
print 'The max target value is: ', np.max(boston.target)
print 'The min target value is: ', np.min(boston.target)
print 'The average terget value is: ', np.mean(boston.target)
 
from sklearn.preprocessing import StandardScaler
 
ss_X = StandardScaler()
ss_y = StandardScaler()
 
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)
 
from sklearn.neighbors import KNeighborsRegressor
 
uni_knr = KNeighborsRegressor(weights = 'uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)
 
dis_knr = KNeighborsRegressor(weights = 'distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)
 
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
 
print 'R-squared value of uniform weights KNeighorRegressor is: ', uni_knr.score(X_test, y_test)
print 'The mean squared error of uniform weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
print 'The mean absolute error of uniform weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
 
print 'R-squared of distance weights KNeighorRegressor is: ', dis_knr.score(X_test, y_test)
print 'the value of mean squared error of distance weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
print 'the value of mean ssbsolute error of distance weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))

以上这篇python实现K近邻回归,采用等权重和不等权重的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中int与str互转方法

python中int与str互转方法

最近学习python中的数据类型时,难免联想到java中的基本型数据类型与引用型数据类型。于是对python中的int与str做了简单赋值输出,出现了意料之外的事情。 >>...

OpenCV2从摄像头获取帧并写入视频文件的方法

一段基于OpenCV2的代码。 作用是从摄像头获取帧并将帧写入指定的视频文件中。 需要注意的是,视频文件所在的路径需要存在,例如D:/images/1.avi。images这个目录需要存...

浅谈Pycharm中的Python Console与Terminal

浅谈Pycharm中的Python Console与Terminal

Pycharm的下方工具栏中有两个窗口:Python Console和Terminal(如下图) 其中,Python Console叫做Python控制台,即Python交互模式;Te...

Python内置数据类型详解

通常来说Python在编程语言中的定位为脚本语言——scripting language 高阶动态编程语言。 Python是以数据为主,变量的值改变是指变量去指到一个地址。 即:Id(变...

Flask框架学习笔记之使用Flask实现表单开发详解

Flask框架学习笔记之使用Flask实现表单开发详解

本文实例讲述了使用Flask实现表单开发。分享给大家供大家参考,具体如下: <!DOCTYPE html> <html lang="en"> <head...