python实现烟花小程序

yipeiwu_com6年前Python基础

本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下

'''
FIREWORKS SIMULATION WITH TKINTER
*self-containing code
*to run: simply type python simple.py in your console
*compatible with both Python 2 and Python 3
*Dependencies: tkinter, Pillow (only for background image)
*The design is based on high school physics, with some small twists only for aesthetics purpose
 
import tkinter as tk
#from tkinter import messagebox
#from tkinter import PhotoImage
from PIL import Image, ImageTk
from time import time, sleep
from random import choice, uniform, randint
from math import sin, cos, radians
# gravity, act as our constant g, you can experiment by changing it
GRAVITY = 0.05
# list of color, can choose randomly or use as a queue (FIFO)
colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen','indigo', 'cornflowerblue']
Generic class for particles
particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed
from canvas
Attributes:
 - id: identifier of a particular particle in a star
 - x, y: x,y-coordinate of a star (point of explosion)
 - vx, vy: speed of particle in x, y coordinate
 - total: total number of particle in a star
 - age: how long has the particle last on canvas
 - color: self-explantory
 - cv: canvas
 - lifespan: how long a particle will last on canvas
class part:
 def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx = 0., vy = 0., size=2., color = 'red', lifespan = 2, **kwargs):
  self.id = idx
  self.x = x
  self.y = y
  self.initial_speed = explosion_speed
  self.vx = vx
  self.vy = vy
  self.total = total
  self.age = 0
  self.color = color
  self.cv = cv
  self.cid = self.cv.create_oval(
   x - size, y - size, x + size,
   y + size, fill=self.color)
  self.lifespan = lifespan
 def update(self, dt):
  self.age += dt
  # particle expansions
  if self.alive() and self.expand():
   move_x = cos(radians(self.id*360/self.total))*self.initial_speed
   move_y = sin(radians(self.id*360/self.total))*self.initial_speed
   self.cv.move(self.cid, move_x, move_y)
   self.vx = move_x/(float(dt)*1000)
  # falling down in projectile motion
  elif self.alive():
   move_x = cos(radians(self.id*360/self.total))
   # we technically don't need to update x, y because move will do the job
   self.cv.move(self.cid, self.vx + move_x, self.vy+GRAVITY*dt)
   self.vy += GRAVITY*dt
  # remove article if it is over the lifespan
  elif self.cid is not None:
   cv.delete(self.cid)
   self.cid = None
 # define time frame for expansion
 def expand (self):
  return self.age <= 1.2
 # check if particle is still alive in lifespan
 def alive(self):
  return self.age <= self.lifespan
Firework simulation loop:
Recursively call to repeatedly emit new fireworks on canvas
a list of list (list of stars, each of which is a list of particles)
is created and drawn on canvas at every call, 
via update protocol inside each 'part' object 
def simulate(cv):
 t = time()
 explode_points = []
 wait_time = randint(10,100)
 numb_explode = randint(6,10)
 # create list of list of all particles in all simultaneous explosion
 for point in range(numb_explode):
  objects = []
  x_cordi = randint(50,550)
  y_cordi = randint(50, 150)
  speed = uniform (0.5, 1.5)   
  size = uniform (0.5,3)
  color = choice(colors)
  explosion_speed = uniform(0.2, 1)
  total_particles = randint(10,50)
  for i in range(1,total_particles):
   r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi, 
    vx = speed, vy = speed, color=color, size = size, lifespan = uniform(0.6,1.75))
   objects.append(r)
  explode_points.append(objects)
 total_time = .0
 # keeps undate within a timeframe of 1.8 second
 while total_time < 1.8:
  sleep(0.01)
  tnew = time()
  t, dt = tnew, tnew - t
  for point in explode_points:
   for item in point:
    item.update(dt)
  cv.update()
  total_time += dt
 # recursive call to continue adding new explosion on canvas
 root.after(wait_time, simulate, cv)
def close(*ignore):
 """Stops simulation loop and closes the window."""
 global root
 root.quit()
 
if __name__ == '__main__':
 root = tk.Tk()
 cv = tk.Canvas(root, height=600, width=600)
 # use a nice background image
 image = Image.open("./image1.jpg")#背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好
 photo = ImageTk.PhotoImage(image)
 cv.create_image(0, 0, image=photo, anchor='nw')
 cv.pack()
 root.protocol("WM_DELETE_WINDOW", close)
 root.after(100, simulate, cv)
 root.mainloop()

注意:这里需要安装tkinter,安装过程:

step1:

>>> import _tkinter # with underscore, and lowercase 't'

step2:

>>> import Tkinter # no underscore, uppercase 'T' for versions prior to V3.0

>>> import tkinter # no underscore, lowercase 't' for V3.0 and later

step3:

>>> Tkinter._test() # note underscore in _test and uppercase 'T' for versions prior to V3.0 

>>> tkinter._test() # note underscore in _test and lowercase 'T' for V3.0 and later

然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Python的Tornado框架中实现简单的在线代理的教程

实现代理的方式很多种,流行的web服务器也大都有代理的功能,比如http://www.tornadoweb.cn用的就是nginx的代理功能做的tornadoweb官网的镜像。 最近,我...

pandas实现DataFrame显示最大行列,不省略显示实例

如下所示: import pandas as pd #显示所有列 pd.set_option('display.max_columns', None) #显示所有行 pd.set_...

浅谈python对象数据的读写权限

面向对象的编程语言在写大型程序的的时候,往往比面向过程的语言用起来更方便,安全。其中原因之一在于:类机制。 类,对众多的数据进行分类,封装,让一个数据对象成为一个完整的个体,贴近现实生活...

python检测空间储存剩余大小和指定文件夹内存占用的实例

1、检测指定路径下所有文件所占用内存 import os def check_memory(path, style='M'): i = 0 for dirpath, dirnam...

浅谈对yield的初步理解

如下所示: def go(): while True: data = 1 r = yield data # data是返回值,r是接收值 print("d...