Python mutiprocessing多线程池pool操作示例

yipeiwu_com6年前Python基础

本文实例讲述了Python mutiprocessing多线程池pool操作。分享给大家供大家参考,具体如下:

python — mutiprocessing 多线程 pool

脚本代码:

root@72132server:~/python/multiprocess# ls
multiprocess_pool.py multprocess.py
root@72132server:~/python/multiprocess# cat multiprocess_pool.py
#!/usr/bin/python
# --*-- coding:utf-8 --*--
import multiprocessing
import sys,os,time
result = []#把运行的进程池放入,空的列表
def run(msg):#定义正在处理进程编号数的函数功能
  print 'threading number:%s %s' %(msg,os.getpid())#打印正在处理的进程编号数与对应的系统进程号
  time.sleep(2)
p = multiprocessing.Pool(processes = 25)#绑定事例,同时执行25个线程
for i in range(100):
  result.append(p.apply_async(run,('%s' %i,)))#异步传输正在运行的进程数字号码
p.close()#关闭正在运行的25个进程
#p.join()
for res in result:#获取运行结果
  res.get(timeout=5)
root@72132server:~/python/multiprocess#

运行情况:

1)脚本运行

root@72132server:~/python/multiprocess# python multiprocess_pool.py
threading number:0 27912
threading number:1 27915
threading number:2 27913
threading number:3 27916
threading number:4 27917
threading number:5 27918
threading number:6 27919
threading number:7 27920
threading number:8 27922
threading number:9 27923
threading number:10 27924
threading number:11 27925
threading number:12 27926
threading number:13 27927
threading number:14 27928
threading number:15 27914
threading number:16 27929
threading number:17 27921
threading number:18 27930
threading number:19 27931
threading number:20 27932
threading number:21 27934
threading number:22 27935
threading number:23 27936
threading number:24 27933
threading number:25 27912
threading number:26 27915
threading number:27 27917
threading number:28 27918
threading number:29 27916
threading number:30 27913
threading number:31 27922
threading number:32 27919
threading number:33 27920
threading number:34 27923
threading number:35 27924
threading number:36 27925
threading number:37 27927
threading number:38 27921
threading number:39 27930
threading number:40 27932
threading number:41 27934
threading number:42 27935
threading number:43 27926
threading number:44 27931
threading number:45 27928
threading number:46 27929
threading number:47 27914
threading number:48 27933
threading number:49 27936
threading number:50 27912
threading number:51 27915

2)进程查看(25个进程同时运行)

root@72132server:~/python/multiprocess# ps -ef | grep multi
root   27905 23930 0 22:39 pts/3  00:00:00 grep multi
root@72132server:~/python/multiprocess# ps -ef | grep multi
root   27911 20609 1 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27912 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27913 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27914 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27915 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27916 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27917 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27918 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27919 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27920 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27921 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27922 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27923 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27924 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27925 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27926 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27927 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27928 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27929 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27930 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27931 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27932 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27933 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27934 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27935 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27936 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27941 23930 0 22:39 pts/3  00:00:00 grep multi
root@72132server:~/python/multiprocess# ps -ef | grep multi
root   27911 20609 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27912 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27913 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27914 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27915 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27916 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27917 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27918 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27919 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27920 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27921 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27922 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27923 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27924 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27925 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27926 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27927 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27928 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27929 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27930 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27931 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27932 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27933 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27934 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27935 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27936 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27943 23930 0 22:39 pts/3  00:00:00 grep multi
root@72132server:~/python/multiprocess#

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

如何利用Fabric自动化你的任务

首先让我们首先看一个例子。我们知道在*NIX下面,uname命令是查看系统的发行版。 可以写这样一个Fabric脚本: from fabric.api import run def...

python验证码识别教程之滑动验证码

前言 上篇文章记录了2种分割验证码的方法,此外还有一种叫做”滴水算法”(Drop Fall Algorithm)的方法,但本人智商原因看这个算法看的云里雾里的,所以今天记录滑动验证码的处...

Python简单计算给定某一年的某一天是星期几示例

Python简单计算给定某一年的某一天是星期几示例

本文实例讲述了Python简单计算给定某一年的某一天是星期几。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #计算某特定天使星期几 #蔡勒公式:w=...

Python动态语言与鸭子类型详解

今天来说说编程语言中的动态类型语言与鸭子类型。 动态语言 维基百科对动态语言的定义: 动态编程语言是一类在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进,已有的函数...

浅谈Python实现贪心算法与活动安排问题

浅谈Python实现贪心算法与活动安排问题

贪心算法 原理:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对...