浅谈pandas筛选出表中满足另一个表所有条件的数据方法

yipeiwu_com5年前Python基础

今天记录一下pandas筛选出一个表中满足另一个表中所有条件的数据。例如:

list1 结构:名字,ID,颜色,数量,类型。

list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']]

list2结构:名字,类型,颜色。

list2 = [['a','03',255],['a','06',481]]

如何在list1中找出所有与list2中匹配的元素?要得到下面的结果:list = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03']]。

首先将两个list转化为dataframe.

list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']]
df1=pd.DataFrame(list1,columns=["名字","ID","颜色","数量","类型"])
list2 = [['a','03',255],['a','06',481]]
df2=pd.DataFrame(list2,columns=["名字","类型","颜色"])

数据结构如下:

pandas筛选出表中满足另一个表所有条件的数据

然后利用pandas.merge函数将其进行内连接。

这个函数的语法是:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)。这函数连接方式和sql的连接类似,由参数how来控制。

最后的代码如下:

import pandas as pd
list1 = [['a',1,255,100,'03'],['a',2,481,50,'06'],['a',47,255,500,'03'],['b',3,1,50,'11']]
df1=pd.DataFrame(list1,columns=["名字","ID","颜色","数量","类型"])
list2 = [['a','03',255],['a','06',481]]
df2=pd.DataFrame(list2,columns=["名字","类型","颜色"])
df=pd.merge(df1,df2,how='inner',on=["名字","类型","颜色"],right_index=True)
df.sort_index(inplace=True)
print(df)

返回结果按照左表的顺序输出:

pandas筛选出表中满足另一个表所有条件的数据

以上这篇浅谈pandas筛选出表中满足另一个表所有条件的数据方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于python的itchat库实现微信聊天机器人(推荐)

基于python的itchat库实现微信聊天机器人(推荐)

一、开始之前必须安装itchat库 pip install itchat(使用pip必须在电脑的环境变量中添加Python的路径) 或 conda install request 二、开...

python 链接和操作 memcache方法

1,打开memcached服务 memcached -m 10 -p 12000 2,使用python-memcached模块,进行简单的链接和存取数据 import me...

pandas计数 value_counts()的使用

pandas计数 value_counts()的使用

在pandas里面常用value_counts确认数据出现的频率。 1. Series 情况下: pandas 的 value_counts() 函数可以对Series里面的每个值进行计...

如何运行Python程序的方法

如何运行Python程序的方法

安装完python之后,我们可以做两件事情, 1.将安装目录中的Doc目录下的python331.chm使用手册复制到桌面上,方便学习和查阅 2.将Python安装路径我的是C:\Pyt...

spark dataframe 将一列展开,把该列所有值都变成新列的方法

spark dataframe 将一列展开,把该列所有值都变成新列的方法

The original dataframe 需求:hour代表一天的24小时,现在要将hour列展开,每一个小时都作为一个列 实现: val pivots = beijingGe...