Python实现多进程的四种方式

yipeiwu_com6年前Python基础

方式一: os.fork()

# -*- coding:utf-8 -*-
"""
pid=os.fork()
  1.只用在Unix系统中有效,Windows系统中无效
  2.fork函数调用一次,返回两次:在父进程中返回值为子进程id,在子进程中返回值为0
"""
import os
pid=os.fork()
if pid==0:
  print("执行子进程,子进程pid={pid},父进程ppid={ppid}".format(pid=os.getpid(),ppid=os.getppid()))
else:
  print("执行父进程,子进程pid={pid},父进程ppid={ppid}".format(pid=pid,ppid=os.getpid()))

方式二: 使用multiprocessing模块: 创建Process的实例,传入任务执行函数作为参数

# -*- coding:utf-8 -*-
"""
Process常用属性与方法:
  name:进程名
  pid:进程id
  run(),自定义子类时覆写
  start(),开启进程
  join(timeout=None),阻塞进程
  terminate(),终止进程
  is_alive(),判断进程是否存活
"""
import os,time
from multiprocessing import Process
def worker():
  print("子进程执行中>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
  time.sleep(2)
  print("子进程终止>>> pid={0}".format(os.getpid()))
def main():
  print("主进程执行中>>> pid={0}".format(os.getpid()))
  ps=[]
  # 创建子进程实例
  for i in range(2):
    p=Process(target=worker,name="worker"+str(i),args=())
    ps.append(p)
  # 开启进程
  for i in range(2):
    ps[i].start()
  # 阻塞进程
  for i in range(2):
    ps[i].join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式三: 使用multiprocessing模块: 派生Process的子类,重写run方法

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Process
class MyProcess(Process):
  def __init__(self):
    Process.__init__(self)
  def run(self):
    print("子进程开始>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
    time.sleep(2)
    print("子进程终止>>> pid={}".format(os.getpid()))
def main():
  print("主进程开始>>> pid={}".format(os.getpid()))
  myp=MyProcess()
  myp.start()
  # myp.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式四: 使用进程池Pool

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Pool
def worker(arg):
  print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
  time.sleep(0.5)
  print("子进程终止>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
def main():
  print("主进程开始执行>>> pid={}".format(os.getpid()))
  ps=Pool(5)
  for i in range(10):
    # ps.apply(worker,args=(i,))     # 同步执行
    ps.apply_async(worker,args=(i,)) # 异步执行
  # 关闭进程池,停止接受其它进程
  ps.close()
  # 阻塞进程
  ps.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

用python求一重积分和二重积分的例子

首先是对一元函数求积分,使用Scipy下的integrate函数: from scipy import integrate def g(x): return (1-x**2)**...

使用Django开发简单接口实现文章增删改查

使用Django开发简单接口实现文章增删改查

1、一些准备工作  安装django pip install django 创建django项目 进入项目代码存放目录执行命令: django-admin.py st...

PyTorch 解决Dataset和Dataloader遇到的问题

今天在使用PyTorch中Dataset遇到了一个问题。先看代码 class psDataset(Dataset): def __init__(self, x, y, trans...

Pytorch在dataloader类中设置shuffle的随机数种子方式

Pytorch在dataloader类中设置shuffle的随机数种子方式

如题:Pytorch在dataloader类中设置shuffle的随机数种子方式 虽然实验结果差别不大,但是有时候也悬殊两个百分点 想要复现实验结果 发现用到随机数的地方就是datalo...

对python程序内存泄漏调试的记录

对python程序内存泄漏调试的记录

问题描述 调试python程序时,用下面这段代码,可以获得进程占用系统内存值。程序跑一段时间后,就能画出进程对内存的占用情况。 def memory_usage_psutil():...