Python实现多进程的四种方式

yipeiwu_com6年前Python基础

方式一: os.fork()

# -*- coding:utf-8 -*-
"""
pid=os.fork()
  1.只用在Unix系统中有效,Windows系统中无效
  2.fork函数调用一次,返回两次:在父进程中返回值为子进程id,在子进程中返回值为0
"""
import os
pid=os.fork()
if pid==0:
  print("执行子进程,子进程pid={pid},父进程ppid={ppid}".format(pid=os.getpid(),ppid=os.getppid()))
else:
  print("执行父进程,子进程pid={pid},父进程ppid={ppid}".format(pid=pid,ppid=os.getpid()))

方式二: 使用multiprocessing模块: 创建Process的实例,传入任务执行函数作为参数

# -*- coding:utf-8 -*-
"""
Process常用属性与方法:
  name:进程名
  pid:进程id
  run(),自定义子类时覆写
  start(),开启进程
  join(timeout=None),阻塞进程
  terminate(),终止进程
  is_alive(),判断进程是否存活
"""
import os,time
from multiprocessing import Process
def worker():
  print("子进程执行中>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
  time.sleep(2)
  print("子进程终止>>> pid={0}".format(os.getpid()))
def main():
  print("主进程执行中>>> pid={0}".format(os.getpid()))
  ps=[]
  # 创建子进程实例
  for i in range(2):
    p=Process(target=worker,name="worker"+str(i),args=())
    ps.append(p)
  # 开启进程
  for i in range(2):
    ps[i].start()
  # 阻塞进程
  for i in range(2):
    ps[i].join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式三: 使用multiprocessing模块: 派生Process的子类,重写run方法

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Process
class MyProcess(Process):
  def __init__(self):
    Process.__init__(self)
  def run(self):
    print("子进程开始>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
    time.sleep(2)
    print("子进程终止>>> pid={}".format(os.getpid()))
def main():
  print("主进程开始>>> pid={}".format(os.getpid()))
  myp=MyProcess()
  myp.start()
  # myp.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式四: 使用进程池Pool

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Pool
def worker(arg):
  print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
  time.sleep(0.5)
  print("子进程终止>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
def main():
  print("主进程开始执行>>> pid={}".format(os.getpid()))
  ps=Pool(5)
  for i in range(10):
    # ps.apply(worker,args=(i,))     # 同步执行
    ps.apply_async(worker,args=(i,)) # 异步执行
  # 关闭进程池,停止接受其它进程
  ps.close()
  # 阻塞进程
  ps.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

详解如何在cmd命令窗口中搭建简单的python开发环境

详解如何在cmd命令窗口中搭建简单的python开发环境

1、快捷键win+r输入cmd回车调出cmd界面,在命令行输入python回车,显示python命令无法识别 2、登陆python官网https://www.python.org/,...

pandas数据清洗,排序,索引设置,数据选取方法

此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shap...

浅谈Tensorflow由于版本问题出现的几种错误及解决方法

1、AttributeError: 'module' object has no attribute 'rnn_cell' S:将tf.nn.rnn_cell替换为tf.contrib....

Python中编写ORM框架的入门指引

有了db模块,操作数据库直接写SQL就很方便。但是,我们还缺少ORM。如果有了ORM,就可以用类似这样的语句获取User对象: user = User.get('123') 而...

pytorch中torch.max和Tensor.view函数用法详解

torch.max() 1. torch.max()简单来说是返回一个tensor中的最大值。 例如: >>> si=torch.randn(4,5) >&g...