Python实现简单层次聚类算法以及可视化

yipeiwu_com6年前Python基础

本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下

基本的算法思路就是:把当前组间距离最小的两组合并成一组。

算法的差异在算法如何确定组件的距离,一般有最大距离,最小距离,平均距离,马氏距离等等。

代码如下:

import numpy as np
import data_helper
np.random.seed(1)
def get_raw_data(n):
 _data=np.random.rand(n,2)
 #生成数据的格式是n个(x,y)
 _groups={idx:[[x,y]] for idx,(x,y) in enumerate(_data)}
 return _groups
def cal_distance(cluster1,cluster2):
 #采用最小距离作为聚类标准
 _min_distance=10000
 for x1,y1 in cluster1:
  for x2,y2 in cluster2:
   _distance=(x1-x2)**2+(y1-y2)**2
   if _distance<_min_distance:
    _min_distance=_distance
 return _distance
groups=get_raw_data(10)
count=0
while len(groups)!=1:#判断是不是所有的数据是不是归为了同一类
 min_distance=10000
 len_groups=len(groups)
 
 for i in groups.keys():
  for j in groups.keys():
   if i>=j:
    continue
   distance=cal_distance(groups[i],groups[j])
   if distance<min_distance:
    min_distance=distance
    min_i=i
    min_j=j#这里的j>i
 groups[min_i].extend(groups.pop(min_j))
 data_helper.draw_data(groups)
 #一共n个簇,共迭代n-1次

运行的效果就是迭代一次,组数就会少一次,调用画图方法,同一组的数据被显示为一个颜色。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pytorch释放显存占用方式

如果在python内调用pytorch有可能显存和GPU占用不会被自动释放,此时需要加入如下代码 torch.cuda.empty_cache() 我们来看一下官方文档的说明 Relea...

python使用Apriori算法进行关联性解析

从大规模数据集中寻找物品间的隐含关系被称作关联分析或关联规则学习。过程分为两步:1.提取频繁项集。2.从频繁项集中抽取出关联规则。 频繁项集是指经常出现在一块的物品的集合。 关联规...

Python编程之string相关操作实例详解

Python编程之string相关操作实例详解

本文实例讲述了Python编程之string相关操作。分享给大家供大家参考,具体如下: #coding=utf8 ''''' 字符串是Python中最常见的类型。可以通过引号见包含字...

详解多线程Django程序耗尽数据库连接的问题

Django的ORM是非常好用的,哪怕不是做Web项目也值得一用,所以网上也可以找到不少使用 Django 开发非Web项目的资料,因为除了ORM之个,命令行、配置文件等组件也非常好用。...

python冒泡排序算法的实现代码

1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的。 2.python冒泡排序代码 复...