Python----数据预处理代码实例

yipeiwu_com5年前Python基础

本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下

1.导入标准库

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

2.导入数据集

dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件
#创建一个包含所有自变量的矩阵,及因变量的向量
#iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。
X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。
y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据

3.缺失数据

from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理
#Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行 
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])#拟合fit
X[:, 1:3] = imputer.transform(X[:, 1:3])

4.分类数据

from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder_X=LabelEncoder()
X[:,0]=labelencoder_X.fit_transform(X[:,0])
onehotencoder=OneHotEncoder(categorical_features=[0])
X=onehotencoder.fit_transform(X).toarray()
#因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字
labelencoder_y=LabelEncoder()
y=labelencoder_y.fit_transform(y)

5.将数据集分为训练集和测试集

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
#X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量)
#训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重
#random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集

6.特征缩放

#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化))
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放
X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test

7.数据预处理模板

(1)导入标准库
(2)导入数据集
(3)缺失和分类很少遇到
(4)将数据集分割为训练集和测试集
(5)特征缩放,大部分情况下不需要,但是某些情况需要特征缩放

以上所述是小编给大家介绍的Python数据预处理详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!

相关文章

彻彻底底地理解Python中的编码问题

Python处理文本的功能非常强大,但是如果是初学者,没有搞清楚python中的编码机制,也经常会遇到乱码或者decode error。本文的目的是简明扼要地说明python的编码机制,...

Pandas实现DataFrame按行求百分数(比例数)

简述 Motivation 一般来说,每个部分的内容数量是较为容易获取的,但比例(百分数)这样的数据是二次数据,这样的操作很常见 比例的信息相比于纯粹的数字更体现的整体体系的内部变化迁移...

使用coverage统计python web项目代码覆盖率的方法详解

使用coverage统计python web项目代码覆盖率的方法详解

本文实例讲述了使用coverage统计python web项目代码覆盖率的方法。分享给大家供大家参考,具体如下: 在使用python+selenium过程中,有时候考虑代码覆盖率,所以专...

读取本地json文件,解析json(实例讲解)

模拟用户登录 # data.json 文件同目录下 [ { "id": 1, "username": "zhangshan", "password": "123qwe",...

Python线程条件变量Condition原理解析

这篇文章主要介绍了Python线程条件变量Condition原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Condition...