Python时间序列处理之ARIMA模型的使用讲解

yipeiwu_com6年前Python基础

ARIMA模型

ARIMA模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作ARIMA(p,d,q)。

ARIMA的适应情况

ARIMA模型相对来说比较简单易用。在应用ARIMA模型时,要保证以下几点:

  • 时间序列数据是相对稳定的,总体基本不存在一定的上升或者下降趋势,如果不稳定可以通过差分的方式来使其变稳定。
  • 非线性关系处理不好,只能处理线性关系

判断时序数据稳定

基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值。

ARIMA数学表达

ARIMA(p,d,q),其中p是数据本身的滞后数,是AR模型即自回归模型中的参数。d是时间序列数据需要几次差分才能得到稳定的数据。q是预测误差的滞后数,是MA模型即滑动平均模型中的参数。

a) p参数与AR模型

AR模型描述的是当前值与历史值之间的关系,滞后p阶的AR模型可以表示为:

其中u是常数,et代表误差。

b) q参数与MA模型

MA模型描述的是当前值与自回归部分的误差累计的关系,滞后q阶的MA模型可以表示为:

其中u是常数,et代表误差。

c) d参数与差分

一阶差分:

二阶差分:

d) ARIMA = AR+MA

ARIMA模型使用步骤

  • 获取时间序列数据
  • 观测数据是否为平稳的,否则进行差分,化为平稳的时序数据,确定d
  • 通过观察自相关系数ACF与偏自相关系数PACF确定q和p

  • 得到p,d,q后使用ARIMA(p,d,q)进行训练预测

Python调用ARIMA

#差分处理
diff_series = diff_series.diff(1)#一阶
diff_series2 = diff_series.diff(1)#二阶
#ACF与PACF
#从scipy导入包
from scipy import stats
import statsmodels.api as sm
#画出acf和pacf
sm.graphics.tsa.plot_acf(diff_series)
sm.graphics.tsa.plot_pacf(diff_series)
#arima模型
from statsmodels.tsa.arima_model import ARIMA
model = ARIMA(train_data,order=(p,d,q),freq='')#freq是频率,根据数据填写
arima = model.fit()#训练
print(arima)
pred = arima.predict(start='',end='')#预测

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

使用python来调用CAN通讯的DLL实现方法

由于工作上的需要,经常要与USBCAN打交道,但厂家一般不会提供PYTHON的例子,于是自己摸索地写一个例子出来,以便在工作上随时可以使用PYTHON来测试CAN的功能。这里的例子是使用...

解读python如何实现决策树算法

数据描述 每条数据项储存在列表中,最后一列储存结果 多条数据项形成数据集 data=[[d1,d2,d3...dn,result], [d1,d2,d3...dn,resul...

python中的随机函数random的用法示例

一、random模块简介 Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。 二、random模块重要函数...

python定义类self用法实例解析

这篇文章主要介绍了python定义类self用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在定义类的过程中,无论是显式的...

python迭代器与生成器详解

例子 老规矩,先上一个代码: def add(s, x): return s + x def gen(): for i in range(4): yield i bas...