快速排序的四种python实现(推荐)

yipeiwu_com5年前Python基础

快速排序算法,简称快排,是最实用的排序算法,没有之一,各大语言标准库的排序函数也基本都是基于快排实现的。

本文用python语言介绍四种不同的快排实现。

1. 一行代码实现的简洁版本

quick_sort = lambda array: array if len(array) <= 1 else quick_sort([item for item in array[1:] if item <= array[0]]) + [array[0]] + quick_sort([item for item in array[1:] if item > array[0]])

2. 网上常见的快排实现

def quick_sort(array, left, right):
  if left >= right:
    return
  low = left
  high = right
  key = array[low]
  while left < right:
    while left < right and array[right] > key:
      right -= 1
    array[left] = array[right]
    while left < right and array[left] <= key:
      left += 1
    array[right] = array[left]
  array[right] = key
  quick_sort(array, low, left - 1)
  quick_sort(array, left + 1, high)

由于快排是原地排序,因此不需要返回array。

array如果是个列表的话,可以通过len(array)求得长度,但是后边递归调用的时候必须使用分片,而分片执行的原列表的复制操作,这样就达不到原地排序的目的了,所以还是要传上边界和下边界的。

3.《算法导论》中的快排程序

def quick_sort(array, l, r):
  if l < r:
    q = partition(array, l, r)
    quick_sort(array, l, q - 1)
    quick_sort(array, q + 1, r)
 
def partition(array, l, r):
  x = array[r]
  i = l - 1
  for j in range(l, r):
    if array[j] <= x:
      i += 1
      array[i], array[j] = array[j], array[i]
  array[i + 1], array[r] = array[r], array[i+1]
  return i + 1

这个版本跟上个版本的不同在于分片过程不同,只用了一层循环,并且一趟就完成分片,相比之下代码要简洁的多了。

4. 用栈实现非递归的快排程序

先说两句题外话,一般意义上的栈有两层含义,一层是后进先出的数据结构栈,一层是指函数的内存栈,归根结底,函数的内存栈的结构就是一个后进先出的栈。汇编代码中,调用一个函数的时候,修改的也是堆栈指针寄存器ESP,该寄存器保存的是函数局部栈的栈顶,另外一个寄存器EBP保存的是栈底。不知道与栈存储空间相对的堆存储空间,其组织结构是否也是一个完全二叉树呢?

高级语言将递归转换为迭代,用的也是栈,需要考虑两个问题:

1)栈里边保存什么?

2)迭代结束的条件是什么?

栈里边保存的当然是需要迭代的函数参数,结束条件也是跟需要迭代的参数有关。对于快速排序来说,迭代的参数是数组的上边界low和下边界high,迭代结束的条件是low == high。

def quick_sort(array, l, r):
  if l >= r:
    return
  stack = []
  stack.append(l)
  stack.append(r)
  while stack:
    low = stack.pop(0)
    high = stack.pop(0)
    if high - low <= 0:
      continue
    x = array[high]
    i = low - 1
    for j in range(low, high):
      if array[j] <= x:
        i += 1
        array[i], array[j] = array[j], array[i]
    array[i + 1], array[high] = array[high], array[i + 1]
    stack.extend([low, i, i + 2, high])

另外,当数组下标为-1时,C++、Java等语言中会报错,但python中访问的是最后一个元素,所以如果程序写错了,可能其他语言会报错,但python会输出一个错误的结果。

以上所述是小编给大家介绍的python实现快速排序算法详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!

相关文章

Python入门篇之字符串

所有标准的序列操作对字符串都适用,但字符串是不可变的 字符串常量: 单引号:‘spa"m' 双引号:"spa'm" 三引号:'''...spam...''',"""...spam..."...

Python 3.x基于Xml数据的Http请求方法

Python 3.x基于Xml数据的Http请求方法

1. 前言 由于公司的一个项目是基于B/S架构与WEB服务通信,使用XML数据作为通信数据,在添加新功能时,WEB端与客户端分别由不同的部门负责,所以在WEB端功能实现过程中,需要自己发...

从django的中间件直接返回请求的方法

实例如下所示: #coding=utf-8 import json import gevent from django.http import HttpResponse from s...

pytorch中如何使用DataLoader对数据集进行批处理的方法

pytorch中如何使用DataLoader对数据集进行批处理的方法

最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络。 pytorch中有很方便的dataloader函数来方...

Python读取和处理文件后缀为.sqlite的数据文件(实例讲解)

Python读取和处理文件后缀为.sqlite的数据文件(实例讲解)

最近在弄一个项目分析的时候,看到有一个后缀为”.sqlite”的数据文件,由于以前没怎么接触过,就想着怎么用python来打开并进行数据分析与处理,于是稍微研究了一下。 SQLite是一...