python dlib人脸识别代码实例

yipeiwu_com5年前Python基础

本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下

import matplotlib.pyplot as plt
import dlib
import numpy as np
import glob
import re
 
#正脸检测器
detector=dlib.get_frontal_face_detector()
#脸部关键形态检测器
sp=dlib.shape_predictor(r"D:\LB\JAVASCRIPT\shape_predictor_68_face_landmarks.dat")
#人脸识别模型
facerec = dlib.face_recognition_model_v1(r"D:\LB\JAVASCRIPT\dlib_face_recognition_resnet_model_v1.dat")
 
#候选人脸部描述向量集
descriptors=[]
 
photo_locations=[]
 
for photo in glob.glob(r'D:\LB\JAVASCRIPT\faces\*.jpg'):
  photo_locations.append(photo)
  img=plt.imread(photo)
  img=np.array(img)
  
  #开始检测人脸
  dets=detector(img,1)
  
  for k,d in enumerate(dets):
    #检测每张照片中人脸的特征
    shape=sp(img,d)
    face_descriptor=facerec.compute_face_descriptor(img,shape)
    v=np.array(face_descriptor)
    descriptors.append(v)
		
#输入的待识别的人脸处理方法相同
img=plt.imread(r'D:\test_photo10.jpg')
img=np.array(img)
dets=detector(img,1)
#计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量)
differences=[]
for k,d in enumerate(dets):
  shape=sp(img,d)
  face_descriptor=facerec.compute_face_descriptor(img,shape)
  d_test=np.array(face_descriptor)
  
  #计算输入人脸和所有已有人脸描述向量的欧氏距离
  for i in descriptors:
    distance=np.linalg.norm(i-d_test)
    differences.append(distance)
 
#按欧式距离排序 欧式距离最小的就是匹配的人脸
candidate_count=len(photo_locations)
candidates_dict=dict(zip(photo_locations,differences))
candidates_dict_sorted=sorted(candidates_dict.items(),key=lambda x:x[1])
 
#matplotlib要正确显示中文需要设置
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
 
plt.rcParams['figure.figsize'] = (20.0, 70.0) 
 
ax=plt.subplot(candidate_count+1,4,1)
ax.set_title("输入的人脸")
ax.imshow(img)
 
for i,(photo,distance) in enumerate(candidates_dict_sorted):
  img=plt.imread(photo)
  
  face_name=""
  photo_name=re.search(r'([^\\]*)\.jpg$',photo)
  if photo_name:
    face_name=photo_name[1]
    
  ax=plt.subplot(candidate_count+1,4,i+2)
  ax.set_xticks([])
  ax.set_yticks([])
  ax.spines['top'].set_visible(False)
  ax.spines['right'].set_visible(False)
  ax.spines['bottom'].set_visible(False)
  ax.spines['left'].set_visible(False)
  
  if i==0:
    ax.set_title("最匹配的人脸\n\n"+face_name+"\n\n差异度:"+str(distance))
  else:
    ax.set_title(face_name+"\n\n差异度:"+str(distance))
  ax.imshow(img)
 
plt.show()

以上所述是小编给大家介绍的python dlib人脸识别详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!

相关文章

Python中exit、return、sys.exit()等使用实例和区别

有这样一道题目:  字符串标识符.修改例 6-1 的 idcheck.py 脚本,使之可以检测长度为一的标识符,并且可以识别 Python 关键字,对后一个要求,你可以使用 k...

python自定义异常实例详解

python自定义异常实例详解          本文通过两种方法对Python 自定义异常进行讲解,第一...

Python中在脚本中引用其他文件函数的实现方法

在导入文件的时候,Python只搜索当前脚本所在的目录,加载(entry-point)入口脚本运行目录和sys.path中包含的路径例如包的安装地址。所以如果要在当前脚本引用其他文件,除...

详解django三种文件下载方式

一、概述 在实际的项目中很多时候需要用到下载功能,如导excel、pdf或者文件下载,当然你可以使用web服务自己搭建可以用于下载的资源服务器,如nginx,这里我们主要介绍djang...

python微信跳一跳系列之自动计算跳一跳距离

python微信跳一跳系列之自动计算跳一跳距离

到现在为止,我们通过前面几篇博文的描述和分析,已经可以自动实现棋子、棋盘位置的准确判断,计算一下两个中心点之间的距离,并绘制在图形上,效果如下。 效果 图中的棋子定位采用HSV颜色识别...