Python3.5 Pandas模块之Series用法实例分析

yipeiwu_com5年前Python基础

本文实例讲述了Python3.5 Pandas模块之Series用法。分享给大家供大家参考,具体如下:

1、Pandas模块引入与基本数据结构


2、Series的创建



#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

#模块引入
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#1.Series通过numpy一维数组创建
print("=========Series通过numpy一维数组创建==========")
arr = np.array([1,2,3,4,5])
s1 = pd.Series(arr)
print(s1)
print(s1.index)
print(s1.values)

#2.Series直接通过一维数组创建
print("=========Series直接通过一维数组创建==========")
s2 = pd.Series([10.5,20,38,40])
print(s2)
#修改索引值
s2.index = ['a','b','c','d']
print(s2)

#Series通过一维数组创建,可以在创建的同时自定义索引值,
# 也可以之后通过赋值的形式去修改
print("=========Series创建的同时自定义索引值和数据类型==========")
s3 = pd.Series(data=[89,78,90,87],dtype=np.float64,
        index=['语文','数学','英语','科学'])
print(s3)

#3.Series通过字典创建,字典的键对应索引,值对应数据
print("=========Series通过字典创建==========")
dict = {'a':1,'b':2,"c":3,"d":4}
s4 = pd.Series(dict)
print(s4)

运行结果:

=========Series通过numpy一维数组创建==========
0    1
1    2
2    3
3    4
4    5
dtype: int32
RangeIndex(start=0, stop=5, step=1)
[1 2 3 4 5]
=========Series直接通过一维数组创建==========
0    10.5
1    20.0
2    38.0
3    40.0
dtype: float64
a    10.5
b    20.0
c    38.0
d    40.0
dtype: float64
=========Series创建的同时自定义索引值和数据类型==========
语文    89.0
数学    78.0
英语    90.0
科学    87.0
dtype: float64
=========Series通过字典创建==========
a    1
b    2
c    3
d    4
dtype: int64

3、Series值的获取


#模块引入
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#4.Series值的获取
print("=========Series值的获取==========")
s2 = pd.Series([10.5,20,38,40])
#修改索引值
s2.index = ['a','b','c','d']
print(s2)
print(s2[0])    #方括号+下标值的形式获取Series值
print(s2["a"])   #方括号+索引的形式获取Series值

运行结果:

=========Series值的获取==========
a    10.5
b    20.0
c    38.0
d    40.0
dtype: float64
10.5
10.5

4、Series运算



#模块引入
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#5.Series值的运算
#Series中元素级别的运算结果,包含索引值并且键值关系保持不变
print("=========Series值的运算==========")
s6 = pd.Series({'a':1,'b':2,"c":3,"d":4})
print(s6)
print("=========打印Series大于2的值==========")
print(s6[s6>2])
print("=========打印Series的值除以2==========")
print(s6/2)

#numpy中的通用函数在Series中也支持
s7= pd.Series([1,2,-3,-4])
print(np.exp(s7))

运行结果:

=========Series值的运算==========
a    1
b    2
c    3
d    4
dtype: int64
=========打印Series大于2的值==========
c    3
d    4
dtype: int64
=========打印Series的值除以2==========
a    0.5
b    1.0
c    1.5
d    2.0
dtype: float64
0    2.718282
1    7.389056
2    0.049787
3    0.018316
dtype: float64

5、Series缺失值检验



#模块引入
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#6.Series缺失值检验
scores = Series({"a":88,"b":79,"c":98,"d":100})
print(scores)

new = ["a","b","e","c","d"]
scores = Series(scores,index=new)
print(scores)

print("======过滤出为缺失值的项=======")
print(scores.isnull())       #NAN值返回True
#print(pd.isnull(scores))      #与上面一句等价

print("======过滤出为非缺失值的项=======")
print(pd.notnull(scores))      #非NAN值返回True

运行结果:

a     88
b     79
c     98
d    100
dtype: int64
a     88.0
b     79.0
e      NaN
c     98.0
d    100.0
dtype: float64
======过滤出为缺失值的项=======
a    False
b    False
e     True
c    False
d    False
dtype: bool
======过滤出为非缺失值的项=======
a     True
b     True
e    False
c     True
d     True
dtype: bool

6、Series自动对齐


#模块引入
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#7.Series自动对齐

s8 = Series([12,28,46],index=["p1","p2","p3"])
s9 = Series([2,4,6,8],index=["p2","p3","p4","p5"])
print("=======s8=======")
print(s8)
print("=======s9=======")
print(s9)
print("=======s8+s9=======")
print(s8+s9)

运行结果:

=======s8=======
p1    12
p2    28
p3    46
dtype: int64
=======s9=======
p2    2
p3    4
p4    6
p5    8
dtype: int64
=======s8+s9=======
p1     NaN
p2    30.0
p3    50.0
p4     NaN
p5     NaN
dtype: float64

7、Series及其索引的name属性


#模块引入
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#8.Series及其name属性
s10 = Series({"jack":18,"amy":20,"lili":23,"susan":15})
print(s10)

print("=======设置name属性后=======")
s10.name = "年龄"    #数据名称标签
s10.index.name = "姓名"    #索引名称标签

print(s10)

运行结果:

amy      20
jack     18
lili     23
susan    15
dtype: int64
=======设置name属性后=======
姓名
amy      20
jack     18
lili     23
susan    15
Name: 年龄, dtype: int64

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python登录QQ邮箱发信的实现代码

复制代码 代码如下:# -*- coding: cp936 -*-from email.Header import Headerfrom email.MIMEText import MI...

Python实时获取cmd的输出

最近发现一个问题,一个小伙儿写的console程序不够健壮,监听SOCKET的时候容易崩,造成程序的整体奔溃,无奈他没有找到问题的解决办法,一直解决不了,可是这又是一个监控程序,还是比较...

Python利用pyHook实现监听用户鼠标与键盘事件

本文以一段简单的监听鼠标、键盘事件的程序,实现获取用户的输入(比如登录某些网站的账号、密码)的功能。经测试,对于一台“裸奔”的电脑,完全能获取到用户输入的任何信息;但是如果安装了杀毒软件...

python3实现基于用户的协同过滤

本文实例为大家分享了python3实现基于用户协同过滤的具体代码,供大家参考,具体内容如下 废话不多说,直接看代码。 #!/usr/bin/python3 # -*- coding...

Flask框架踩坑之ajax跨域请求实现

Flask框架踩坑之ajax跨域请求实现

业务场景: 前后端分离需要对接数据接口。 接口测试是在postman做的,今天才开始和前端对接,由于这是我第一次做后端接口开发(第一次嘛,问题比较多)所以在此记录分享我的踩坑之旅,以便能...