Python3.5 Pandas模块缺失值处理和层次索引实例详解

yipeiwu_com6年前Python基础

本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引。分享给大家供大家参考,具体如下:

1、pandas缺失值处理




import numpy as np
import pandas as pd
from pandas import Series,DataFrame

df3 = DataFrame([
  ["Tom",np.nan,456.67,"M"],
  ["Merry",34,345.56,np.nan],
  [np.nan,np.nan,np.nan,np.nan],
  ["John",23,np.nan,"M"],
  ["Joe",18,385.12,"F"]
],columns = ["name","age","salary","gender"])

print(df3)
print("=======判断NaN值=======")
print(df3.isnull())
print("=======判断非NaN值=======")
print(df3.notnull())
print("=======删除包含NaN值的行=======")
print(df3.dropna())
print("=======删除全部为NaN值的行=======")
print(df3.dropna(how="all"))

df3.ix[2,0] = "Gerry"    #修改第2行第0列的值
print(df3)

print("=======删除包含NaN值的列=======")
print(df3.dropna(axis=1))

运行结果:

   name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
2    NaN   NaN     NaN    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
=======判断NaN值=======
    name    age salary gender
0  False   True  False  False
1  False  False  False   True
2   True   True   True   True
3  False  False   True  False
4  False  False  False  False
=======判断非NaN值=======
    name    age salary gender
0   True  False   True   True
1   True   True   True  False
2  False  False  False  False
3   True   True  False   True
4   True   True   True   True
=======删除包含NaN值的行=======
  name   age  salary gender
4  Joe  18.0  385.12      F
=======删除全部为NaN值的行=======
    name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
    name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
2  Gerry   NaN     NaN    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
=======删除包含NaN值的列=======
    name
0    Tom
1  Merry
2  Gerry
3   John
4    Joe

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

df4 = DataFrame(np.random.randn(7,3))
print(df4)

df4.ix[:4,1] = np.nan    #第0至3行,第1列的数据
df4.ix[:2,2] = np.nan
print(df4)

print(df4.fillna(0))    #将缺失值用传入的指定值0替换

print(df4.fillna({1:0.5,2:-1}))   #将缺失值按照指定形式填充

运行结果:

          0         1         2
0 -0.737618 -0.530302 -2.716457
1  0.810339  0.063028 -0.341343
2  0.070564  0.347308 -0.121137
3 -0.501875 -1.573071 -0.816077
4 -2.159196 -0.659185 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618       NaN       NaN
1  0.810339       NaN       NaN
2  0.070564       NaN       NaN
3 -0.501875       NaN -0.816077
4 -2.159196       NaN -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618  0.000000  0.000000
1  0.810339  0.000000  0.000000
2  0.070564  0.000000  0.000000
3 -0.501875  0.000000 -0.816077
4 -2.159196  0.000000 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618  0.500000 -1.000000
1  0.810339  0.500000 -1.000000
2  0.070564  0.500000 -1.000000
3 -0.501875  0.500000 -0.816077
4 -2.159196  0.500000 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323

2、pandas常用数学统计方法




import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#pandas常用数学统计方法

arr = np.array([
  [98.5,89.5,88.5],
  [98.5,85.5,88],
  [70,85,60],
  [80,85,82]
])
df1 = DataFrame(arr,columns=["语文","数学","英语"])
print(df1)
print("=======针对列计算总统计值=======")
print(df1.describe())
print("=======默认计算各列非NaN值个数=======")
print(df1.count())
print("=======计算各行非NaN值个数=======")
print(df1.count(axis=1))

运行结果:

     语文    数学    英语
0  98.5  89.5  88.5
1  98.5  85.5  88.0
2  70.0  85.0  60.0
3  80.0  85.0  82.0
=======针对列计算总统计值=======
              语文         数学         英语
count   4.000000   4.000000   4.000000
mean   86.750000  86.250000  79.625000
std    14.168627   2.179449  13.412525
min    70.000000  85.000000  60.000000
25%    77.500000  85.000000  76.500000
50%    89.250000  85.250000  85.000000
75%    98.500000  86.500000  88.125000
max    98.500000  89.500000  88.500000
=======默认计算各列非NaN值个数=======
语文    4
数学    4
英语    4
dtype: int64
=======计算各行非NaN值个数=======
0    3
1    3
2    3
3    3
dtype: int64



import numpy as np
import pandas as pd
from pandas import Series,DataFrame、

#2.pandas相关系数与协方差
df2 = DataFrame({
  "GDP":[12,23,34,45,56],
  "air_temperature":[23,25,26,27,30],
  "year":["2001","2002","2003","2004","2005"]
})

print(df2)
print("=========相关系数========")
print(df2.corr())
print("=========协方差========")
print(df2.cov())
print("=========两个量之间的相关系数========")
print(df2["GDP"].corr(df2["air_temperature"]))
print("=========两个量之间协方差========")
print(df2["GDP"].cov(df2["air_temperature"]))

运行结果:

 GDP  air_temperature  year
0   12               23  2001
1   23               25  2002
2   34               26  2003
3   45               27  2004
4   56               30  2005
=========相关系数========
                      GDP  air_temperature
GDP              1.000000         0.977356
air_temperature  0.977356         1.000000
=========协方差========
                   GDP  air_temperature
GDP              302.5             44.0
air_temperature   44.0              6.7
=========两个量之间的相关系数========
0.97735555485
=========两个量之间协方差========
44.0





import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#3.pandas唯一值、值计数及成员资格

df3 = DataFrame({
  "order_id":["1001","1002","1003","1004","1005"],
  "member_id":["m01","m01","m02","m01","m02",],
  "order_amt":[345,312.2,123,250.2,235]
})

print(df3)

print("=========去重后的数组=========")
print(df3["member_id"].unique())

print("=========值出现的频率=========")
print(df3["member_id"].value_counts())

print("=========成员资格=========")
df3 = df3["member_id"]
mask = df3.isin(["m01"])
print(mask)
print(df3[mask])

运行结果:

 member_id  order_amt order_id
0       m01      345.0     1001
1       m01      312.2     1002
2       m02      123.0     1003
3       m01      250.2     1004
4       m02      235.0     1005
=========去重后的数组=========
['m01' 'm02']
=========值出现的频率=========
m01    3
m02    2
Name: member_id, dtype: int64
=========成员资格=========
0     True
1     True
2    False
3     True
4    False
Name: member_id, dtype: bool
0    m01
1    m01
3    m01
Name: member_id, dtype: object

3、pandas层次索引





import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#3.pandas层次索引
data = Series([998.4,6455,5432,9765,5432],
       index=[["2001","2001","2001","2002","2002"],
       ["苹果","香蕉","西瓜","苹果","西瓜"]]
       )
print(data)

df4 = DataFrame({
  "year":[2001,2001,2002,2002,2003],
  "fruit":["apple","banana","apple","banana","apple"],
  "production":[2345,5632,3245,6432,4532],
  "profits":[245.6,432.7,534.1,354,467.8]
})

print(df4)
print("=======层次化索引=======")
df4 = df4.set_index(["year","fruit"])
print(df4)
print("=======依照索引取值=======")
print(df4.ix[2002,"apple"])
print("=======依照层次化索引统计数据=======")
print(df4.sum(level="year"))
print(df4.mean(level="fruit"))
print(df4.min(level=["year","fruit"]))

运行结果:

2001  苹果     998.4
      香蕉    6455.0
      西瓜    5432.0
2002  苹果    9765.0
      西瓜    5432.0
dtype: float64
    fruit  production  profits  year
0   apple        2345    245.6  2001
1  banana        5632    432.7  2001
2   apple        3245    534.1  2002
3  banana        6432    354.0  2002
4   apple        4532    467.8  2003
=======层次化索引=======
             production  profits
year fruit
2001 apple         2345    245.6
     banana        5632    432.7
2002 apple         3245    534.1
     banana        6432    354.0
2003 apple         4532    467.8
=======依照索引取值=======
production    3245.0
profits        534.1
Name: (2002, apple), dtype: float64
=======依照层次化索引统计数据=======
      production  profits
year
2001        7977    678.3
2002        9677    888.1
2003        4532    467.8
        production     profits
fruit
apple         3374  415.833333
banana        6032  393.350000
             production  profits
year fruit
2001 apple         2345    245.6
     banana        5632    432.7
2002 apple         3245    534.1
     banana        6432    354.0
2003 apple         4532    467.8

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

PyQt5 实现字体大小自适应分辨率的方法

最近遇到一个现象,将做好的软件放在更高分辨率的电脑上运行,会导致字体显示不完全,出现被控件遮挡的情况。具体原因可以上网查询,在这里将记录下解决方法。 这里记录两种方法,如果使用的Qt版本...

用Python编写一个国际象棋AI程序

用Python编写一个国际象棋AI程序

最近我用Python做了一个国际象棋程序并把代码发布在Github上了。这个代码不到1000行,大概20%用来实现AI。在这篇文章中我会介绍这个AI如何工作,每一个部分做什么,它为什么能...

python事件驱动event实现详解

python事件驱动event实现详解

所有的计算机程序都可以大致分为两类:脚本型(单次运行)和连续运行型(直到用户主动退出)。 脚本型:脚本型的程序包括最早的批处理文件以及使用Python做交易策略回测等等,这类程序的特点是...

Python中 map()函数的用法详解

Python中 map()函数的用法详解

map( )函数在算法题目里面经常出现,map( )会根据提供的函数对指定序列做映射,在写返回值等需要转换的时候比较常用。 关于映射map,可以把[ ]转成字符串的话,就不需要用循环打印...

python中单例常用的几种实现方法总结

前言 最近这两天在看自己之前写的代码,所以正好把用过的东西整理一下,单例模式,在日常的代码工作中也是经常被用到, 所以这里把之前用过的不同方式实现的单例方式整理一下 什么是单例? 确保...