python opencv实现图像边缘检测

yipeiwu_com5年前Python基础

本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤:

1、去噪

如cv2.GaussianBlur()等函数;

2、计算图像梯度

图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式:

3、非极大值抑制

在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的。如下图所示:

4、滞后阈值

现在要确定那些边界才是真正的边界。这时我们需要设置两个阈值:minVal 和maxVal。当图像的灰度梯度高于maxVal 时被认为是真的边界,那些低于minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:

在Python Opencv接口中,提供了Canny函数,可以对图像进行一键执行边缘检测。 

接下来,利用Canny函数进行边缘检测的实验。

Canny函数需要指定几个参数:

1、需要进行边缘检测的原图
2、阈值下限
3、阈值上限

我们为了能够看到不同阈值范围对边缘检测结果的影响,设置了两个滑动条,来分别表示阈值上下限。

完整代码如下:

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 13 14:23:32 2018
@author: Leon
内容:
对图片进行边缘检测;
添加滑动条,可自由调整阈值上下限。
"""
 
import cv2
import numpy as np
 
def nothing(x):
  pass
 
cv2.namedWindow('Canny',0)
# 创建滑动条
cv2.createTrackbar('minval','Canny',0,255,nothing)
cv2.createTrackbar('maxval','Canny',0,255,nothing)
 
img = cv2.imread('Tree.jpg',0)
 
# 高斯滤波去噪
img = cv2.GaussianBlur(img,(3,3),0)
edges =img
 
k=0
while(1):
 
  key = cv2.waitKey(50) & 0xFF
  if key == ord('q'):
    break
  # 读取滑动条数值
  minval = cv2.getTrackbarPos('minval','Canny')
  maxval = cv2.getTrackbarPos('maxval','Canny')
  edges = cv2.Canny(img,minval,maxval)
  
  # 拼接原图与边缘监测结果图
  img_2 = np.hstack((img,edges))
  cv2.imshow('Canny',img_2)
 
cv2.destroyAllWindows()

效果如图:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 日期操作类代码

完整代码 # -*- coding: utf-8 -*- '''获取当前日期前后N天或N月的日期''' from time import strftime, localtime...

详解python中的index函数用法

1.函数的创建 def fun():        #定义 print('hellow') #函数的执行代码 retrun 1 #返回值 fun()...

对python中url参数编码与解码的实例详解

一、简介 在python中url,对于中文等非ascii码字符,需要进行参数的编码与解码。 二、关键代码 1、url编码 对字符串编码用urllib.parse包下的quote(stri...

python 类之间的参数传递方式

练手记录以及调试步骤. class A(object): def __init__(self,a="A"): print("enter",a) print("le...

python命令行参数用法实例分析

python命令行参数用法实例分析

本文实例讲述了python命令行参数用法。分享给大家供大家参考,具体如下: 在命令行下执行某些命令的时候,通常会在一个命令后面带上一些参数,这些参数会传递到程序里,进行处理,然后返回结果...