python批量识别图片指定区域文字内容

yipeiwu_com6年前Python基础

Python批量识别图片指定区域文字内容,供大家参考,具体内容如下

简介

对于一张图片,需求识别指定区域的内容

1.截取原始图上的指定图片当做模板
2.根据模板相似度去再原始图片上识别准确坐标
3.根据坐标剪切出指定位置图片,也就是所需的内容区域
4.对指定位置图片进行ocr识别

环境

Ubuntu18.04
Python2.7

所需Python模块

1.aircv

用于识别模板再原始图的位置坐标

pip install aircv

2.Pillow

用于剪裁图片

pip install Pillow

3.Tesseract

文字识别
在此也可以用平台端的API进行更精准的识别
ubuntu下Tesseract环境安装

sudo apt-get install libpng12-dev 
sudo apt-get install libjpeg62-dev 
sudo apt-get install libtiff4-dev 
sudo apt-get install gcc 
sudo apt-get install g++ 
sudo apt-get install automake

1.tesseract-ocr安装

sudo apt-get install tesseract-ocr

2.pytesseract安装

pip install pytesseract

Python代码

识别对应位置

#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
import aircv


def matchImg(imgsrc, imgobj, confidence=0.2):
 """
  图片对比识别imgobj在imgsrc上的相对位置(批量识别统一图片中需要的部分)
 :param imgsrc: 原始图片路径(str)
 :param imgobj: 待查找图片路径(模板)(str)
 :param confidence: 识别度(0<confidence<1.0)
 :return: None or dict({'confidence': 相似度(float), 'rectangle': 原始图片上的矩形坐标(tuple), 'result': 中心坐标(tuple)})
 """
 imsrc = aircv.imread(imgsrc)
 imobj = aircv.imread(imgobj)

 match_result = aircv.find_template(imsrc, imobj,
         confidence) # {'confidence': 0.5435812473297119, 'rectangle': ((394, 384), (394, 416), (450, 384), (450, 416)), 'result': (422.0, 400.0)}
 if match_result is not None:
  match_result['shape'] = (imsrc.shape[1], imsrc.shape[0]) # 0为高,1为宽

 return match_result

图片剪裁

#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
from PIL import Image, ImageEnhance

def cutImg(imgsrc, out_img_name, coordinate):
 """
  根据坐标位置剪切图片
 :param imgsrc: 原始图片路径(str)
 :param out_img_name: 剪切输出图片路径(str)
 :param coordinate: 原始图片上的坐标(tuple) egg:(x, y, w, h) ---> x,y为矩形左上角坐标, w,h为右下角坐标
 :return:
 """
 image = Image.open(imgsrc)
 region = image.crop(coordinate)
 region = ImageEnhance.Contrast(region).enhance(1.5)
 region.save(out_img_name)

图片识别

#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
import pytesseract
from PIL import Image

image = Image.open('bb.png')
code = pytesseract.image_to_string(image)
print(code)

对于三方API识别自行研究

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Pandas中处理NaN值的方法

在Pandas中处理NaN值的方法

关于NaN值 -在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据, 也就是说,我们需要通过某个方法检测并更正数据中的错误。 - 任何给定数据集可能会出现各种糟糕的数据,例如...

Python使用win32 COM实现Excel的写入与保存功能示例

Python使用win32 COM实现Excel的写入与保存功能示例

本文实例讲述了Python使用win32 COM实现Excel的写入与保存功能。分享给大家供大家参考,具体如下: 很久之前通过东拼西凑实现过使用Python通过win32 COM实现wo...

Django ORM 聚合查询和分组查询实现详解

Django ORM 聚合查询和分组查询实现详解

models.py: from django.db import models # 出版社 class Publisher(models.Model): id = models...

Python----数据预处理代码实例

本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下 1.导入标准库 import numpy as np import matplotlib.pyplo...

python中Lambda表达式详解

如果你在学校读的是计算机科学专业,那么可能学过 Lambda 表达式, 不过可能从来没有用过它。如果你不是计算机科学专业,它们看着可能 有点儿陌生(或者只是“曾经学习过的东西”)。在这一...