基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

yipeiwu_com5年前Python基础

1.滑动平均概念

滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)  把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4

优点:  对周期性干扰有良好的抑制作用,平滑度高  适用于高频振荡的系统 

缺点:  灵敏度低  对偶然出现的脉冲性干扰的抑制作用较差  不易消除由于脉冲干扰所引起的采样值偏差  不适用于脉冲干扰比较严重的场合  比较浪费RAM 

2.解决思路

可以发现滑动平均滤波法计算很类似与一维卷积的工作原理,滑动平均的N就对应一维卷积核大小(长度)。

步长会有些区别,滑动平均滤波法滑动步长为1,而一维卷积步长可以自定义。还有区别就是一维卷积的核参数是需要更新迭代的,而滑动平均滤波法核参数都是一。

我们应该怎么利用这个相似性呢?其实也很简单,只需要把一维卷积核大小(长度)和N相等,步长设置为1,核参数都初始为1就可以了。由于一维卷积具备速度快,然后我们就可以使用一维卷积来实现这个功能了,快速高效。

使用深度学习框架实现这个功能是否有些大材小用了?是有些大材小用了,因为这里使用卷积的核参数不用更新,其实没必要使用复杂的深度学习框架,如果Numpy中可以实现这些功能就更简单方便了。

说干就干,经过查找发现Numpy.convolve可以实现我们想要的功能。

3.Numpy.convolve介绍

numpy.convolve(a, v, mode=‘full')

参数:
    a:(N,)输入的一维数组
    v:(M,)输入的第二个一维数组
    mode:{‘full', ‘valid', ‘same'}参数可选
      ‘full' 默认值,返回每一个卷积值,长度是N+M-1,在卷积的边缘处,信号不重叠,存在边际效应。
      ‘same' 返回的数组长度为max(M, N),边际效应依旧存在。
      ‘valid'  返回的数组长度为max(M,N)-min(M,N)+1,此时返回的是完全重叠的点。边缘的点无效。

和一维卷积参数类似,a就是被卷积数据,v是卷积核大小。

4.算法实现

def np_move_avg(a,n,mode="same"):
  return(np.convolve(a, np.ones((n,))/n, mode=mode))

原理说明

运行平均值是卷积数学运算的一个例子。对于运行平均值,沿着输入滑动窗口并计算窗口内容的平均值。对于离散的1D信号,卷积是相同的,除了代替计算任意线性组合的平均值,即将每个元素乘以相应的系数并将结果相加。那些系数,一个用于窗口中的每个位置,有时称为卷积核。现在,N值的算术平均值是(x_1 + x_2 + ... + x_N) / N,所以相应的内核是(1/N, 1/N, ..., 1/N),这正是我们通过使用得到的np.ones((N,))/N。

边缘处理

该mode的参数np.convolve指定如何处理边缘。在这里选择了same模式,这样可以保证输出长度一种,但你可能还有其他优先事项。这是一个说明模式之间差异的图:

import numpy as np
import matplotlib.pyplot as plt
def np_move_avg(a,n,mode="same"):
  return(np.convolve(a, np.ones((n,))/n, mode=mode))
modes = ['full', 'same', 'valid']
for m in modes:
  plt.plot(np_move_avg(np.ones((200,)), 50, mode=m));
plt.axis([-10, 251, -.1, 1.1]);
plt.legend(modes, loc='lower center');
plt.show() ​

5.参考

1. https://stackoverflow.com/questions/13728392/moving-average-or-running-mean

总结

以上所述是小编给大家介绍的Python实现滑动平均滤波的思路详解(基于Numpy.convolve),希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

python自动化实现登录获取图片验证码功能

python自动化实现登录获取图片验证码功能

主要记录一下:图片验证码 1.获取登录界面的图片 2.获取验证码位置 3.在登录页面截取验证码保存 4.调用百度api识别(目前准确率较高的识别图片api) 本次登录的系统页面,可以看到...

理解python正则表达式

在python中,对正则表达式的支持是通过re模块来支持的。使用re的步骤是先把表达式字符串编译成pattern实例,然后在使用pattern去匹配文本获取结果。 其实也有另外一种方式,...

Python使用Slider组件实现调整曲线参数功能示例

Python使用Slider组件实现调整曲线参数功能示例

本文实例讲述了Python使用Slider组件实现调整曲线参数功能。分享给大家供大家参考,具体如下: 一 代码 import numpy as np import matplotli...

面向初学者的Python编辑器Mu

面向初学者的Python编辑器Mu

Meet Mu,一个开放源码编辑器,使学生们更容易学习编写Python代码。 Mu一个开源编辑器,是满足学生可以轻松学习编写Python代码的工具。作为初学程序员的Python编辑器,旨...

详解pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)

详解pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)

在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧。 首先,还是列出一个我们用的DataFrame,注意...