numpy下的flatten()函数用法详解

yipeiwu_com5年前Python基础

flatten是numpy.ndarray.flatten的一个函数,其官方文档是这样描述的:

ndarray.flatten(order='C')

Return a copy of the array collapsed into one dimension.

Parameters:

 

order : {‘C', ‘F', ‘A', ‘K'}, optional

‘C' means to flatten in row-major (C-style) order. ‘F' means to flatten in column-major (Fortran- style) order. ‘A' means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K' means to flatten a in the order the elements occur in memory. The default is ‘C'.

Returns:

y : ndarray

A copy of the input array, flattened to one dimension.

即返回一个折叠成一维的数组。但是该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的。

例子:

1、用于array对象

from numpy import *
 
>>>a=array([[1,2],[3,4],[5,6]]) ###此时a是一个array对象
>>>a
array([[1,2],[3,4],[5,6]])
>>>a.flatten()
array([1,2,3,4,5,6]) 

2、用于mat对象

>>> a=mat([[1,2,3],[4,5,6]])
>>> a
matrix([[1, 2, 3],
  [4, 5, 6]])<br>>>> a.flatten()<br>matrix([[1, 2, 3, 4, 5, 6]])<br> 

3、但是该方法不能用于list对象

>>> a=[[1,2,3],[4,5,6],['a','b']]
[[1, 2, 3], [4, 5, 6], ['a', 'b']]
>>> a.flatten()      ###报错
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'flatten' 

想要list达到同样的效果可以使用列表表达式:

>>> [y for x in a for y in x]
[1, 2, 3, 4, 5, 6, 'a', 'b']

4、用在矩阵

>>> a = [[1,3],[2,4],[3,5]]
>>> a = mat(a)
>>> y = a.flatten()
>>> y
matrix([[1, 3, 2, 4, 3, 5]])
>>> y = a.flatten().A
>>> y
array([[1, 3, 2, 4, 3, 5]])
>>> shape(y)
(1, 6)
>>> shape(y[0])
(6,)
>>> y = a.flatten().A[0]
>>> y
array([1, 3, 2, 4, 3, 5])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用urllib2实现发送带cookie的请求

本文实例讲述了python使用urllib2实现发送带cookie的请求。分享给大家供大家参考。具体实现方法如下: import urllib2 opener = urllib2.b...

对python中xlsx,csv以及json文件的相互转化方法详解

最近需要各种转格式,这里对相关代码作一个记录,方便日后查询。 xlsx文件转csv文件 import xlrd import csv def xlsx_to_csv(): wo...

python按比例随机切分数据的实现

在机器学习或者深度学习中,我们常常碰到一个问题是数据集的切分。比如在一个比赛中,举办方给我们的只是一个带标注的训练集和不带标注的测试集。其中训练集是用于训练,而测试集用于已训练模型上跑出...

Pycharm最新激活码2019(推荐)

Pycharm最新激活码2019(推荐)

pycharm2019激活码是专门针对与pycharm2019这一款软件而研发的激活码,能够完美激活软件,并且能够支持2019.1版本,理论上也能够支持后继的2019.2,2019.3,...

django自定义模板标签过程解析

django自定义模板标签过程解析

这篇文章主要介绍了django自定义模板标签过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码布局 自定义模板标签必须位于...