PyCharm搭建Spark开发环境实现第一个pyspark程序

yipeiwu_com5年前Python基础

一, PyCharm搭建Spark开发环境

Windows7, Java1.8.0_74, Scala 2.12.6, Spark 2.2.1, Hadoop2.7.6

通常情况下,Spark开发是基于Linux集群的,但这里作为初学者并且囊中羞涩,还是在windows环境下先学习吧。

参照这个配置本地的Spark环境。

之后就是配置PyCharm用来开发Spark。本人在这里浪费了不少时间,因为百度出来的无非就以下两种方式:

1.在程序中设置环境变量

import os
import sys

os.environ['SPARK_HOME'] = 'C:\xxx\spark-2.2.1-bin-hadoop2.7'
sys.path.append('C:\xxx\spark-2.2.1-bin-hadoop2.7\python')

2.在Edit Configuration中添加环境变量

不过还是没有解决程序中代码自动补全。

想了半天,观察到spark提供的pyspark很像单独的安装包,应该可以考虑将pyspark包放到python的安装目录下,这样也就自动添加到之前所设置的pythonpath里了,应该就能实现pyspark的代码补全提示。

将spark下的pyspark包放到python路径下(注意,不是spark下的python!)

最后,实现了pyspark代码补全功能。

二.第一个pyspark程序

作为小白,只能先简单用下python+pyspark了。

数据:Air Quality in Madrid (2001-2018)

需求:根据历史数据统计出每个月平均指标值

import os
import re
from pyspark.sql import SparkSession

if __name__ == "__main__":

 spark = SparkSession.builder.getOrCreate()
 df_array = []
 years = []
 air_quality_data_folder = "C:/xxx/spark/air-quality-madrid/csvs_per_year"
 for file in os.listdir(air_quality_data_folder):
  if '2018' not in file:
   year = re.findall("\d{4}", file)
   years.append(year[0])
   file_path = os.path.join(air_quality_data_folder, file)
   df = spark.read.csv(file_path, header="true")
   # print(df.columns)
   df1 = df.withColumn('yyyymm', df['date'].substr(0, 7))
   df_final = df1.filter(df1['yyyymm'].substr(0, 4) == year[0]).groupBy(df1['yyyymm']).agg({'PM10': 'avg'})
   df_array.append(df_final)

 pm10_months = [0] * 12
 # print(range(12))
 for df in df_array:
  for i in range(12):
   rows = df.filter(df['yyyymm'].contains('-'+str(i+1).zfill(2))).first()
   # print(rows[1])
   pm10_months[i] += (rows[1]/12)

 years.sort()
 print(years[0] + ' - ' + years[len(years)-1] + '年,每月平均PM10统计')
 m_index = 1
 for data in pm10_months:
  print(str(m_index).zfill(2) + '月份: ' + '||' * round(data))
  m_index += 1

运行结果:

- 2017年,每月平均PM10统计
01月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
02月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
03月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
04月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
05月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
06月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
07月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
09月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

由以上统计结果,可以看出4月份的PM10最低。

Done!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python super用法及原理详解

这篇文章主要介绍了python super用法及原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 概念 super作为pyth...

在python中创建指定大小的多维数组方式

python中创建指定大小的二维数组,有点像C++中进行动态申请内存创建数组,不过相比较而言,python中更为简单一些。 创建n行m列的二维数组: n = 2 m = 3 ma...

python async with和async for的使用

网上async with和async for的中文资料比较少,我把PEP 492中的官方陈述翻译一下。 异步上下文管理器”async with” 异步上下文管理器指的是在enter和e...

详细解析Python中的变量的数据类型

详细解析Python中的变量的数据类型

 变量是只不过保留的内存位置用来存储值。这意味着,当创建一个变量,那么它在内存中保留一些空间。 根据一个变量的数据类型,解释器分配内存,并决定如何可以被存储在所保留的内存中。因...

python+splinter自动刷新抢票功能

抢票脚本,python +splinter自动刷新抢票,可以成功抢到(依赖自己的网络环境太厉害,还有机器的好坏),但是感觉不是很完美。 有大神请指导完善一下(或者有没有别的好点的思路),...