Python OpenCV中的resize()函数的使用

yipeiwu_com5年前Python基础

改变图像大小意味着改变尺寸,无论是单独的高或宽,还是两者。也可以按比例调整图像大小。

这里将介绍resize()函数的语法及实例。

语法

函数原型

cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])

参数:

参数 描述
src 【必需】原图像
dsize 【必需】输出图像所需大小
fx 【可选】沿水平轴的比例因子
fy 【可选】沿垂直轴的比例因子
interpolation

【可选】插值方式

【可选】插值方式

其中插值方式有很多种:

cv.INTER_NEAREST 最近邻插值
cv.INTER_LINEAR 双线性插值
cv.INTER_CUBIC 双线性插值
cv.INTER_AREA 使用像素区域关系重新采样。它可能是图像抽取的首选方法,因为它可以提供无莫尔条纹的结果。但是当图像被缩放时,它类似于INTER_NEAREST方法。

通常的,缩小使用cv.INTER_AREA,放缩使用cv.INTER_CUBIC(较慢)和cv.INTER_LINEAR(较快效果也不错)。默认情况下,所有的放缩都使用cv.INTER_LINEAR。

例子

保留高宽比

以下是我们将在其上进行实验的尺寸(149,200,4)(高度,宽度,通道数)的原始图像:

import cv2
 
img = cv2.imread('./Pictures/python.png', cv2.IMREAD_UNCHANGED)
 
print('Original Dimensions : ',img.shape)
 
scale_percent = 60  # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
 
print('Resized Dimensions : ',resized.shape)
 
cv2.imshow("Resized image", resized)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

Original Dimensions : (149, 200, 4)
Resized Dimensions : (89, 120, 4)

调节scale_percent可以放大或缩小。需要准备shape先高再宽,参数是先宽再高。

还有一种方式,就是使用自带的参数fx和fy,更加方便。

import cv2
img = cv2.imread("./Pictures/python.png")
print('Original Dimensions : ', img.shape)

resized = cv2.resize(img, None, fx=0.6, fy=0.6, interpolation=cv2.INTER_AREA)

print('Resized Dimensions : ',resized.shape)

cv2.imshow("resized_img", resized)
cv2.waitKey(0)

不保留高宽比

例如,改变宽度,高度不变:

import cv2

img = cv2.imread("./Pictures/python.png")

print('Original Dimensions : ',img.shape)
 
width = 440
height = img.shape[0] # keep original height
dim = (width, height)
 
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
 
print('Resized Dimensions : ',resized.shape)
 
cv2.imshow("Resized image", resized)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

Original Dimensions : (149, 200, 4)
Resized Dimensions : (149, 440, 4)

指定高和宽

给定高和宽的像数值。

import cv2

img = cv2.imread("./Pictures/python.png")

print('Original Dimensions : ',img.shape)
 
width = 350
height = 450
dim = (width, height)
 
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
 
print('Resized Dimensions : ',resized.shape)
 
cv2.imshow("Resized image", resized)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

Original Dimensions : (149, 200, 4)
Resized Dimensions : (450, 350, 4)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyTorch搭建多项式回归模型(三)

PyTorch搭建多项式回归模型(三)

PyTorch基础入门三:PyTorch搭建多项式回归模型  1)理论简介 对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回归来拟合更...

python 循环数据赋值实例

python在数值赋值的时候可以采用数值内循环赋值,很方便 如下 a = [x for x in range(10)] 这样 a = [0,1,2,3,4,5,6,7,8,9]...

pytorch 修改预训练model实例

我就废话不多说了,直接上代码吧! class Net(nn.Module): def __init__(self , model): super(Net, self)._...

Python图像处理之颜色的定义与使用分析

Python图像处理之颜色的定义与使用分析

本文实例讲述了Python图像处理之颜色的定义与使用。分享给大家供大家参考,具体如下: python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模...

用Python解决计数原理问题的方法

用Python解决计数原理问题的方法

前几天遇到这样一道数学题: 用四种不同颜色给三棱柱六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有多少种? 当我看完题目后,顿时不知所措。于是我拿起...