python数据挖掘需要学的内容

yipeiwu_com6年前Python基础

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

· pandas 分组计算;

· pandas 索引与多重索引;

索引比较难,但是却是非常重要的

· pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

· Numpy array理解;

· 数组索引操作;

· 数组计算;

· Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

· Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

· seaborn的使用

seaborn是一个非常漂亮的可视化工具。

· pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

· 机器学习的定义

在这里跟数据挖掘先不做区别

· 代价函数的定义

· Train/Test/Validate

· Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

· 最小二乘算法;

· 梯度下降;

· 向量化;

· 极大似然估计;

· Logistic Regression;

· Decision Tree;

· RandomForesr;

· XGBoost;

6、数据挖掘实战

通过机器学习里面最着名的库scikit-learn来进行模型的理解。

相关文章

python ctypes库2_指定参数类型和返回类型详解

python函数的参数类型和返回类型默认为int。 如果需要传递一个float值给dll,那么需要指定参数的类型。 如果需要返回一个flaot值到python中,那么需要指定返回数据的类...

TensorFlow在MAC环境下的安装及环境搭建

TensorFlow在MAC环境下的安装及环境搭建

给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程。 TensorFlow 底层的图模型结构清晰,容易改造;支持分布式训练;可视化效果好。如果做长期项目,接...

使用 Python 合并多个格式一致的 Excel 文件(推荐)

使用 Python 合并多个格式一致的 Excel 文件(推荐)

一 问题描述 最近朋友在工作中遇到这样一个问题,她每天都要处理如下一批 Excel 表格:每个表格的都只有一个 sheet,表格的前两行为表格标题及表头,表格的最后一行是相关人员签字。最...

python的random模块及加权随机算法的python实现方法

random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。 •random.seed(x)改变随机数生成器的种子seed。 一般不必特别去设定seed,Pyt...

python实现zencart产品数据导入到magento(python导入数据)

python版本要求在3.3.x,需要mysql connector for python第三方库支持不适用所有的zencart导入到magento 复制代码 代码如下:#encodin...