python数据挖掘需要学的内容

yipeiwu_com6年前Python基础

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

· pandas 分组计算;

· pandas 索引与多重索引;

索引比较难,但是却是非常重要的

· pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

· Numpy array理解;

· 数组索引操作;

· 数组计算;

· Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

· Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

· seaborn的使用

seaborn是一个非常漂亮的可视化工具。

· pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

· 机器学习的定义

在这里跟数据挖掘先不做区别

· 代价函数的定义

· Train/Test/Validate

· Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

· 最小二乘算法;

· 梯度下降;

· 向量化;

· 极大似然估计;

· Logistic Regression;

· Decision Tree;

· RandomForesr;

· XGBoost;

6、数据挖掘实战

通过机器学习里面最着名的库scikit-learn来进行模型的理解。

相关文章

Django实现简单网页弹出警告代码

功能所在位置 该功能运用了django.contrib.messages这个库,再django项目中srtting.py文件中的38行,APP注册部分 INSTALLED_APPS...

python创建与遍历List二维列表的方法

python 创建List二维列表 lists = [[] for i in range(3)] # 创建的是多行三列的二维列表 for i in range(3): lists...

python实现将一维列表转换为多维列表(numpy+reshape)

如题,我们直接使用numpy #!D:/workplace/python # -*- coding: utf-8 -*- # @File : numpy_reshape.py # @...

Python的内存泄漏及gc模块的使用分析

一般来说在 Python 中,为了解决内存泄漏问题,采用了对象引用计数,并基于引用计数实现自动垃圾回收。 由于Python 有了自动垃圾回收功能,就造成了不少初学者误认为自己从此过上了好...

python字典序问题实例

本文实例讲述了python字典序问题,分享给大家供大家参考。具体如下: 问题描述: 将字母从左向右的次序与字母表中的次序相同,且每个字符最大出现一次..例如:a,b,ab,bc,xyz等...