pandas计数 value_counts()的使用

yipeiwu_com6年前Python基础

在pandas里面常用value_counts确认数据出现的频率。

1. Series 情况下:

pandas 的 value_counts() 函数可以对Series里面的每个值进行计数并且排序。

import pandas as pd
df = pd.DataFrame({'区域' : ['西安', '太原', '西安', '太原', '郑州', '太原'], 
         '10月份销售' : ['0.477468', '0.195046', '0.015964', '0.259654', '0.856412', '0.259644'],
         '9月份销售' : ['0.347705', '0.151220', '0.895599', '0236547', '0.569841', '0.254784']})
print(df)

统计每个区域出现多少次:

print(df['区域'].value_counts())

每个区域都被计数,并且默认从高到低排序。

如果想升序排列,设置参数 ascending = True:

print(df['区域'].value_counts(ascending=True))

如果想得出计数占比,可以加参数 normalize=True

print(df['区域'].value_counts(normalize=True))

注:空值默认剔除掉的。value_counts()返回的结果是一个Series数组,可以跟别的数组进行计算。

2. DataFrame 情况下:

import pandas as pd
df = pd.DataFrame({'区域1' : ['西安', '太原', '西安', '太原', '郑州', '太原'],
          '区域2' : ['太原', '太原', '西安', '西安', '西安', '太原']})
print(df.apply(pd.value_counts))

区域2中没有郑州,所以是NaN。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对python调用RPC接口的实例详解

要调用RPC接口,python提供了一个框架grpc,这是google开源的 rpc相关文档: https://grpc.io/docs/tutorials/basic/python.h...

Python读取指定日期邮件的实例

背景:9月份有部分数据缺失,这部分数据在邮箱里,需要重新拉取,但是每天几百封邮件,总共有6、7万封邮件,使用stat()和retr(which)结合遍历很 耗时 基于如上背景,初始大致思...

Python使用filetype精确判断文件类型

filetype.py Small and dependency free Python package to infer file type and MIME type checkin...

Python 面向对象 成员的访问约束

在Python中是通过一套命名体系来识别成约的访问范围的 class MyObjec(object): username = "developerworks" # public _ema...

Python2.7.10以上pip更新及其他包的安装教程

Python2.7.10以上pip更新及其他包的安装教程

Python2.7还是一个比较稳定的版本,目前80%以上的公司都在使用python2.7的版本。他不会在安装的时候报编码错误之类的问题。 但是从官网下载的Python上面自带的pip都是...