pandas计数 value_counts()的使用

yipeiwu_com5年前Python基础

在pandas里面常用value_counts确认数据出现的频率。

1. Series 情况下:

pandas 的 value_counts() 函数可以对Series里面的每个值进行计数并且排序。

import pandas as pd
df = pd.DataFrame({'区域' : ['西安', '太原', '西安', '太原', '郑州', '太原'], 
         '10月份销售' : ['0.477468', '0.195046', '0.015964', '0.259654', '0.856412', '0.259644'],
         '9月份销售' : ['0.347705', '0.151220', '0.895599', '0236547', '0.569841', '0.254784']})
print(df)

统计每个区域出现多少次:

print(df['区域'].value_counts())

每个区域都被计数,并且默认从高到低排序。

如果想升序排列,设置参数 ascending = True:

print(df['区域'].value_counts(ascending=True))

如果想得出计数占比,可以加参数 normalize=True

print(df['区域'].value_counts(normalize=True))

注:空值默认剔除掉的。value_counts()返回的结果是一个Series数组,可以跟别的数组进行计算。

2. DataFrame 情况下:

import pandas as pd
df = pd.DataFrame({'区域1' : ['西安', '太原', '西安', '太原', '郑州', '太原'],
          '区域2' : ['太原', '太原', '西安', '西安', '西安', '太原']})
print(df.apply(pd.value_counts))

区域2中没有郑州,所以是NaN。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python闭包之返回函数的函数用法示例

Python闭包之返回函数的函数用法示例

闭包(closure)不是什么可怕的东西。如果用对了地方,它们其实可以很强大。闭包就是由其他函数动态生成并返回的函数,通俗地讲,在一个函数的内部,还有一个“内层”的函数,这个“内层”的函...

python的移位操作实现详解

因为要将js的一个签名算法移植到python上,遇到一些麻烦。 int无限宽度,不会溢出 算法中需要用到了32位int的溢出来参与运算,但是python的int是不会溢出的,达到界限后...

python绘制已知点的坐标的直线实例

如下所示: import matplotlib.pyplot as plt import numpy as np x = [11422,11360,11312,112...

Python+matplotlib实现填充螺旋实例

Python+matplotlib实现填充螺旋实例

填充螺旋演示结果: 实例代码: import matplotlib.pyplot as plt import numpy as np theta = np.arange(0, 8...

Python 基础教程之闭包的使用方法

Python 基础教程之闭包的使用方法 前言: 闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编...