pandas计数 value_counts()的使用

yipeiwu_com5年前Python基础

在pandas里面常用value_counts确认数据出现的频率。

1. Series 情况下:

pandas 的 value_counts() 函数可以对Series里面的每个值进行计数并且排序。

import pandas as pd
df = pd.DataFrame({'区域' : ['西安', '太原', '西安', '太原', '郑州', '太原'], 
         '10月份销售' : ['0.477468', '0.195046', '0.015964', '0.259654', '0.856412', '0.259644'],
         '9月份销售' : ['0.347705', '0.151220', '0.895599', '0236547', '0.569841', '0.254784']})
print(df)

统计每个区域出现多少次:

print(df['区域'].value_counts())

每个区域都被计数,并且默认从高到低排序。

如果想升序排列,设置参数 ascending = True:

print(df['区域'].value_counts(ascending=True))

如果想得出计数占比,可以加参数 normalize=True

print(df['区域'].value_counts(normalize=True))

注:空值默认剔除掉的。value_counts()返回的结果是一个Series数组,可以跟别的数组进行计算。

2. DataFrame 情况下:

import pandas as pd
df = pd.DataFrame({'区域1' : ['西安', '太原', '西安', '太原', '郑州', '太原'],
          '区域2' : ['太原', '太原', '西安', '西安', '西安', '太原']})
print(df.apply(pd.value_counts))

区域2中没有郑州,所以是NaN。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中ConfigParse模块的用法

本文实例讲述了python中ConfigParse模块的用法,分享给大家供大家参考。具体方法如下: 写配置一般用ConfigParse.RawConfigParse类 读配置用Conf...

Python实现读取SQLServer数据并插入到MongoDB数据库的方法示例

本文实例讲述了Python实现读取SQLServer数据并插入到MongoDB数据库的方法。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- impo...

Vue的el-scrollbar实现自定义滚动

Vue的el-scrollbar实现自定义滚动

为什么要用el-scrollbar? 最近在写一个内部平台系统,相信大家都知道,其中会有很多自定义的滚动区域,就比如说现在有一个列表需要滚动,第一个念头就是用 overflow: sc...

如何基于python实现脚本加密

如何基于python实现脚本加密

这篇文章主要介绍了如何基于python实现脚本加密,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 from pathlib im...

python多维数组切片方法

1、数组a第0个元素(二维数组)下的所有子元素(一维数组)的第一列 import numpy as np b=np.arange(24) a=b.reshape(2,3,4) pri...