Pandas之MultiIndex对象的示例详解

yipeiwu_com6年前Python基础

约定

import pandas as pd
from pandas import DataFrame
import numpy as np

MultiIndex

MultiIndex表示多级索引,它是从Index继承过来的,其中多级标签用元组对象来表示。

一、创建MultiIndex对象

创建方式一:元组列表

m_index1=pd.Index([("A","x1"),("A","x2"),("B","y1"),("B","y2"),("B","y3")],name=["class1","class2"])
m_index1

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2', 'y3']],
      labels=[[0, 0, 1, 1, 1], [0, 1, 2, 3, 4]],
      names=['class1', 'class2'])
df1=DataFrame(np.random.randint(1,10,(5,3)),index=m_index1)
df1

代码结果:

0 1 2
class1 class2
A x1 7 4 8
x2 4 5 2
B y1 6 9 7
y2 2 1 6
y3 6 8 6

创建方式二:特定结构

例如**from_arrays()

class1=["A","A","B","B"]
class2=["x1","x2","y1","y2"]
m_index2=pd.MultiIndex.from_arrays([class1,class2],names=["class1","class2"])
m_index2

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2']],
      labels=[[0, 0, 1, 1], [0, 1, 2, 3]],
      names=['class1', 'class2'])
df2=DataFrame(np.random.randint(1,10,(4,3)),index=m_index2)
df2

代码结果:

0 1 2
class1 class2
A x1 2 4 5
x2 3 5 9
B y1 7 1 2
y2 3 1 8

创建方式三:笛卡尔积

from_product()从多个集合的笛卡尔积创建MultiIndex对象。

m_index3=pd.MultiIndex.from_product([["A","B"],['x1','y1']],names=["class1","class2"])
m_index3


代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'y1']],
      labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
      names=['class1', 'class2'])
df3=DataFrame(np.random.randint(1,10,(2,4)),columns=m_index3)
df3

代码结果:

class1 A B
class2 x1 y1 x1 y1
0 2 9 1 8
1 5 2 5 2

二、MultiIndex对象属性

df1

代码结果:

0 1 2
class1 class2
A x1 7 4 8
x2 4 5 2
B y1 6 9 7
y2 2 1 6
y3 6 8 6

m_index4=df1.index
print(in1[0])

代码结果:

('A', 'x1')

调用.get_loc()和.get_indexer()获取标签的下标:

print(m_index4.get_loc(("A","x2")))
print(m_index4.get_indexer([("A","x2"),("B","y1"),"nothing"]))

代码结果:

1
[ 1  2 -1]

MultiIndex对象使用多个Index对象保存索引中每一级的标签:

print(m_index4.levels[0])
print(m_index4.levels[1])

代码结果:

Index(['A', 'B'], dtype='object', name='class1')
Index(['x1', 'x2', 'y1', 'y2', 'y3'], dtype='object', name='class2')

MultiIndex对象还有属性labels保存标签的下标:

print(m_index4.labels[0])
print(m_index4.labels[1])

代码结果:

FrozenNDArray([0, 0, 1, 1, 1], dtype='int8')
FrozenNDArray([0, 1, 2, 3, 4], dtype='int8')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用Opencv实现图像特征检测与匹配的方法

Python使用Opencv实现图像特征检测与匹配的方法

特征检测是计算机对一张图像中最为明显的特征进行识别检测并将其勾画出来。大多数特征检测都会涉及图像的角点、边和斑点的识别、或者是物体的对称轴。 角点检测 是由Opencv的cornerH...

Python数据分析库pandas基本操作方法

Python数据分析库pandas基本操作方法

pandas是什么? 是它吗? 。。。。很显然pandas没有这个家伙那么可爱。。。。 我们来看看pandas的官网是怎么来定义自己的: pandas is an open sourc...

python 随机数使用方法,推导以及字符串,双色球小程序实例

如下所示: #随机数的使用 import random #导入random random.randint(0,9)#制定随机数0到9 i=random.sample(range(1,...

python计算列表内各元素的个数实例

如下所示: list = [1,2,3,4,5,6,7,5,4,3,2,12] set = set(list) dict = {} for item in set: dict.u...

跟老齐学Python之Import 模块

跟老齐学Python之Import 模块

认识模块 对于模块,在前面的一些举例中,已经涉及到了,比如曾经有过:import random (获取随机数模块)。为了能够对模块有一个清晰的了解,首先要看看什么模块,这里选取官方文档中...