Pandas之MultiIndex对象的示例详解

yipeiwu_com5年前Python基础

约定

import pandas as pd
from pandas import DataFrame
import numpy as np

MultiIndex

MultiIndex表示多级索引,它是从Index继承过来的,其中多级标签用元组对象来表示。

一、创建MultiIndex对象

创建方式一:元组列表

m_index1=pd.Index([("A","x1"),("A","x2"),("B","y1"),("B","y2"),("B","y3")],name=["class1","class2"])
m_index1

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2', 'y3']],
      labels=[[0, 0, 1, 1, 1], [0, 1, 2, 3, 4]],
      names=['class1', 'class2'])
df1=DataFrame(np.random.randint(1,10,(5,3)),index=m_index1)
df1

代码结果:

0 1 2
class1 class2
A x1 7 4 8
x2 4 5 2
B y1 6 9 7
y2 2 1 6
y3 6 8 6

创建方式二:特定结构

例如**from_arrays()

class1=["A","A","B","B"]
class2=["x1","x2","y1","y2"]
m_index2=pd.MultiIndex.from_arrays([class1,class2],names=["class1","class2"])
m_index2

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2']],
      labels=[[0, 0, 1, 1], [0, 1, 2, 3]],
      names=['class1', 'class2'])
df2=DataFrame(np.random.randint(1,10,(4,3)),index=m_index2)
df2

代码结果:

0 1 2
class1 class2
A x1 2 4 5
x2 3 5 9
B y1 7 1 2
y2 3 1 8

创建方式三:笛卡尔积

from_product()从多个集合的笛卡尔积创建MultiIndex对象。

m_index3=pd.MultiIndex.from_product([["A","B"],['x1','y1']],names=["class1","class2"])
m_index3


代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'y1']],
      labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
      names=['class1', 'class2'])
df3=DataFrame(np.random.randint(1,10,(2,4)),columns=m_index3)
df3

代码结果:

class1 A B
class2 x1 y1 x1 y1
0 2 9 1 8
1 5 2 5 2

二、MultiIndex对象属性

df1

代码结果:

0 1 2
class1 class2
A x1 7 4 8
x2 4 5 2
B y1 6 9 7
y2 2 1 6
y3 6 8 6

m_index4=df1.index
print(in1[0])

代码结果:

('A', 'x1')

调用.get_loc()和.get_indexer()获取标签的下标:

print(m_index4.get_loc(("A","x2")))
print(m_index4.get_indexer([("A","x2"),("B","y1"),"nothing"]))

代码结果:

1
[ 1  2 -1]

MultiIndex对象使用多个Index对象保存索引中每一级的标签:

print(m_index4.levels[0])
print(m_index4.levels[1])

代码结果:

Index(['A', 'B'], dtype='object', name='class1')
Index(['x1', 'x2', 'y1', 'y2', 'y3'], dtype='object', name='class2')

MultiIndex对象还有属性labels保存标签的下标:

print(m_index4.labels[0])
print(m_index4.labels[1])

代码结果:

FrozenNDArray([0, 0, 1, 1, 1], dtype='int8')
FrozenNDArray([0, 1, 2, 3, 4], dtype='int8')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python安装与基本数据类型教程详解

Python安装与基本数据类型教程详解

人生苦短,我选Python。 Python比其他的语言来说真的简洁多了,很多时候想做的东西都有对应的模块可以导入,平时玩点小东西真心不错。 首先讲一下安装,其实没什么好讲的,点点点点点,...

Python 26进制计算实现方法

本文实例讲述了Python 26进制计算方法。分享给大家供大家参考。具体分析如下: 题目是这样的: 假设A=1,B=2,C=3...AA=27,AB=28...AAA=xxx(表示某个数...

Python使用tkinter模块实现推箱子游戏

Python使用tkinter模块实现推箱子游戏

前段时间用C语言做了个字符版的推箱子,着实是比较简陋。正好最近用到了Python,然后想着用Python做一个图形界面的推箱子。这回可没有C那么简单,首先Python的图形界面我是没怎么...

Python2.7.10以上pip更新及其他包的安装教程

Python2.7.10以上pip更新及其他包的安装教程

Python2.7还是一个比较稳定的版本,目前80%以上的公司都在使用python2.7的版本。他不会在安装的时候报编码错误之类的问题。 但是从官网下载的Python上面自带的pip都是...

分享一个pycharm专业版安装的永久使用方法

分享一个pycharm专业版安装的永久使用方法

刚开始接触Python,首先要解决的就是Python开发环境的搭建。 目前比较好用的Python开发工具是PyCharm,他有社区办和专业版两个版本,但是社区版支持有限,我们既然想好好学...