Pandas之MultiIndex对象的示例详解

yipeiwu_com6年前Python基础

约定

import pandas as pd
from pandas import DataFrame
import numpy as np

MultiIndex

MultiIndex表示多级索引,它是从Index继承过来的,其中多级标签用元组对象来表示。

一、创建MultiIndex对象

创建方式一:元组列表

m_index1=pd.Index([("A","x1"),("A","x2"),("B","y1"),("B","y2"),("B","y3")],name=["class1","class2"])
m_index1

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2', 'y3']],
      labels=[[0, 0, 1, 1, 1], [0, 1, 2, 3, 4]],
      names=['class1', 'class2'])
df1=DataFrame(np.random.randint(1,10,(5,3)),index=m_index1)
df1

代码结果:

0 1 2
class1 class2
A x1 7 4 8
x2 4 5 2
B y1 6 9 7
y2 2 1 6
y3 6 8 6

创建方式二:特定结构

例如**from_arrays()

class1=["A","A","B","B"]
class2=["x1","x2","y1","y2"]
m_index2=pd.MultiIndex.from_arrays([class1,class2],names=["class1","class2"])
m_index2

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2']],
      labels=[[0, 0, 1, 1], [0, 1, 2, 3]],
      names=['class1', 'class2'])
df2=DataFrame(np.random.randint(1,10,(4,3)),index=m_index2)
df2

代码结果:

0 1 2
class1 class2
A x1 2 4 5
x2 3 5 9
B y1 7 1 2
y2 3 1 8

创建方式三:笛卡尔积

from_product()从多个集合的笛卡尔积创建MultiIndex对象。

m_index3=pd.MultiIndex.from_product([["A","B"],['x1','y1']],names=["class1","class2"])
m_index3


代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'y1']],
      labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
      names=['class1', 'class2'])
df3=DataFrame(np.random.randint(1,10,(2,4)),columns=m_index3)
df3

代码结果:

class1 A B
class2 x1 y1 x1 y1
0 2 9 1 8
1 5 2 5 2

二、MultiIndex对象属性

df1

代码结果:

0 1 2
class1 class2
A x1 7 4 8
x2 4 5 2
B y1 6 9 7
y2 2 1 6
y3 6 8 6

m_index4=df1.index
print(in1[0])

代码结果:

('A', 'x1')

调用.get_loc()和.get_indexer()获取标签的下标:

print(m_index4.get_loc(("A","x2")))
print(m_index4.get_indexer([("A","x2"),("B","y1"),"nothing"]))

代码结果:

1
[ 1  2 -1]

MultiIndex对象使用多个Index对象保存索引中每一级的标签:

print(m_index4.levels[0])
print(m_index4.levels[1])

代码结果:

Index(['A', 'B'], dtype='object', name='class1')
Index(['x1', 'x2', 'y1', 'y2', 'y3'], dtype='object', name='class2')

MultiIndex对象还有属性labels保存标签的下标:

print(m_index4.labels[0])
print(m_index4.labels[1])

代码结果:

FrozenNDArray([0, 0, 1, 1, 1], dtype='int8')
FrozenNDArray([0, 1, 2, 3, 4], dtype='int8')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现图片转字符画的示例

Python实现图片转字符画的示例

字符画真的很有意思,将图片中的像素用字符代替,就生成了字符画。 但是像素是有颜色深浅的,我们如何将带有不同颜色的像素编码为对应的字符呢? 转化方法: 将彩色图片转化为灰度图 根...

python实现高斯(Gauss)迭代法的例子

我就废话不多说了,直接上代码大家一起看吧! #Gauss迭代法 输入系数矩阵mx、值矩阵mr、迭代次数n(以list模拟矩阵 行优先) def Gauss(mx,mr,n=100):...

在Python上基于Markov链生成伪随机文本的教程

 首先看一下来自Wolfram的定义     马尔可夫链是随机变量{X_t}的集合(t贯穿0,1,...),给定当前的状态,未来与过去条件独立。...

python实现合并两个数组的方法

本文实例讲述了python实现合并两个数组的方法。分享给大家供大家参考。具体如下: python合并两个数组,将两个数组连接成一个数组,例如,数组 a=[1,2,3] ,数组 b=[4,...

python 3.7.0 下pillow安装方法

python 3.7.0 下pillow安装方法

PIL(Python Imaging Library)是Python中一个强大的图像处理库,但目前其只支持到Python2.7 pillow是PIL的一个分支,虽是分支但是其与PIL同样...