Pandas之Dropna滤除缺失数据的实现方法

yipeiwu_com5年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 文件操作删除某行的实例

使用continue跳过本次写循环就可以了 #文本内容 Yesterday when I was young 昨日当我年少轻狂 The tasting of life was swe...

python字符串中的单双引

python中字符串可以(且仅可以)使用成对的单引号、双引号、三个双引号(文档字符串)包围: 'this is a book'  "this is a book" """thi...

Python中的枚举类型示例介绍

起步 Python 的原生类型中并不包含枚举类型。为了提供更好的解决方案,Python 通过 PEP 435 在 3.4 版本中添加了 enum 标准库。 枚举类型可以看作是一种标签或...

原生python实现knn分类算法

原生python实现knn分类算法

一、题目要求 用原生Python实现knn分类算法。 二、题目分析 数据来源:鸢尾花数据集(见附录Iris.txt) 数据集包含150个数据集,分为3类,分别是:Iris Setosa(...

解决Python中回文数和质数的问题

解决Python中回文数和质数的问题

一、前言 今天学习视频时课后作业是找出1000以内既是素数又是回文数的数,写代码这个很容易,结果一运行遇到了bug,输出结果跟预期不一样,调试了快30min,再接着一通搜索和回看视频才发...