Pandas之Dropna滤除缺失数据的实现方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用pygame实现笑脸乒乓球弹珠球游戏

python使用pygame实现笑脸乒乓球弹珠球游戏

今天我们用python和pygame实现一个乒乓球的小游戏,或者叫弹珠球游戏。 笑脸乒乓球游戏功能介绍 乒乓球游戏功能如下: 乒乓球从屏幕上方落下,用鼠标来移动球拍,使其反弹回去,并获得...

python字典操作实例详解

本文实例为大家分享了python字典操作实例的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python3 # -*- coding: utf-8 -*- im...

tensorflow-gpu安装的常见问题及解决方案

tensorflow-gpu安装的常见问题及解决方案

装tensorflow-gpu的时候经常遇到问题,自己装过几次,经常遇到相同或者类似的问题,所以打算记录一下,也希望对其他人有所帮助 基本信息 tensorflow-gpu p...

详解Python学习之安装pandas

详解Python学习之安装pandas

一、python pip的安装与使用 1、pip 是 Python 包管理工具,该工具提供了对Python 包的查找、下载、安装、卸载的功能。 目前如果你在 python.or...

python实现批量修改文件名代码

python实现批量修改文件名代码

我曾以为,写脚本是很难的,直到我遇到了Python 前言随着国内版权意识的跟进,很多影视音乐资源开始收费,而且度盘又经常随意封杀各种资源,所以,为了保护资源,老司机们越来越倾向于把资源下...