Pandas之Dropna滤除缺失数据的实现方法

yipeiwu_com5年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 实现语音聊天机器人的示例代码

python 实现语音聊天机器人的示例代码

前言 在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求,整合了语音识别的python程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在python程序中实现语音识...

Python 实现文件的全备份和差异备份详解

Python实现文件的全备份和差异备份 之前有写利用md5方式来做差异备份,但是这种md5方式来写存在以下问题: md5sum获取有些软连接的MD5值存在问题 不支持对空目录...

python交换两个变量的值方法

大部分语言,例如c语言,交换两个变量的值需要使用中间变量。 例如交换a,b 伪代码: tmp = a a = b b = tmp python里面可以实现无临时变量的交换 (a,b...

Python3基于sax解析xml操作示例

Python3基于sax解析xml操作示例

本文实例讲述了Python3基于sax解析xml操作。分享给大家供大家参考,具体如下: python使用SAX解析xml SAX是一种基于事件驱动的API。 利用SAX解析XML文档牵涉...

Python计算三维矢量幅度的方法

本文实例讲述了Python计算三维矢量幅度的方法。分享给大家供大家参考。具体如下: from numpy import * from math import * a=(['x','y...