Pandas之Dropna滤除缺失数据的实现方法

yipeiwu_com5年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python网络编程之读取网站根目录实例

本文实例讲述了python网络编程之读取网站根目录的方法,分享给大家供大家参考。 具体实现方法如下: import socket, sys port = 70 host =...

Python实现线性插值和三次样条插值的示例代码

Python实现线性插值和三次样条插值的示例代码

(1)、函数 y = sin(x) (2)、数据准备 #数据准备 X=np.arange(-np.pi,np.pi,1) #定义样本点X,从-pi到pi每次间隔1 Y= np.s...

Python实现的拉格朗日插值法示例

本文实例讲述了Python实现的拉格朗日插值法。分享给大家供大家参考,具体如下: 拉格朗日插值简单介绍 拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。 许...

Django框架orM与自定义SQL语句混合事务控制操作

本文实例讲述了Django框架orM与自定义SQL语句混合事务控制操作。分享给大家供大家参考,具体如下: 用单纯的ORM 或者单纯的自定义SQL语句,都比较好控制事务。在前面的一篇文章中...

python的pip安装以及使用教程

python的pip安装以及使用教程

pip的安装,以及使用pip安装包的方法,记录如下,分享给大家: —–安装python的时候勾选了下载pip,不知道为什么没下载。然后就偷懒想着需要哪个包再单独去下载就好了,然后!!!每...