Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com5年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3 XML 获取雅虎天气的实现方法

参考廖雪峰的Python教程,实现Linux Python3获取雅虎天气 #!/usr/bin/env python3 # coding: utf-8 import os from...

Python编程实现微信企业号文本消息推送功能示例

本文实例讲述了Python微信企业号文本消息推送功能。分享给大家供大家参考,具体如下: 企业号的创建、企业号应用的创建、组、tag、part就不赘述了,一搜一大堆,但是网上拿的那些个脚本...

pycharm远程linux开发和调试代码的方法

pycharm远程linux开发和调试代码的方法

pycharm是一个非常强大的python开发工具,现在很多代码最终在线上跑的环境都是linux,而开发环境可能还是windows下开发,这就需要经常在linux上进行调试,或者在lin...

Python 快速实现CLI 应用程序的脚手架

Python 快速实现CLI 应用程序的脚手架

今天跟大家分享一下如何快速实现一个Python CLI应用程序的脚手架,之所以会做这个是因为当时需要做一个运维的小工具希望用命令行的方式来使用,但是搜遍网上很多资料都没有系统讲解从开发、...

python使用生成器实现可迭代对象

本文实例为大家分享了python使用生成器实现可迭代对象的具体代码,供大家参考,具体内容如下 案例分析:       &nbs...