Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com6年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用Python实现Windows定时关机功能

利用Python实现Windows定时关机功能

是最初的几个爬虫,让我认识了Python这个新朋友,虽然才刚认识了几天,但感觉有种莫名的默契感。每当在别的地方找不到思路,总能在Python找到解决的办法。自动关机,在平时下载大文件,以...

Python SQLAlchemy基本操作和常用技巧(包含大量实例,非常好)

首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同。因为我是搭配 MySQL InnoDB 使用,所以使用其他数据库的也不能完全照搬本文。...

Pandas GroupBy对象 索引与迭代方法

如下所示: import pandas as pd df = pd.DataFrame({'性别' : ['男', '女', '男', '女', '男', '女',...

解决python通过cx_Oracle模块连接Oracle乱码的问题

用python连接Oracle是总是乱码,最有可能的是oracle客户端的字符编码设置不对。 本人是在进行数据插入的时候总是报关键字"From"不存在,打印插入的Sql在pl/sql中进...

详解Python中的type()方法的使用

 type()方法返回传递变量的类型。如果传递变量是字典那么它将返回一个字典类型。 语法 以下是type()方法的语法: type(dict) 参数  ...