Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com5年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

windows上安装python3教程以及环境变量配置详解

windows上安装python3教程以及环境变量配置详解

1.在浏览器搜索python.org,如下图选择第一个 2.进入python官网,选择dowload然后选择windows如下图: 3.选择python3.6并下载 4.下载...

基于树莓派的语音对话机器人

本文实例为大家分享了基于树莓派的语音对话机器人,供大家参考,具体内容如下 第一部分代码 arecord -D "plughw:1" -f S16_LE -r 16000 -d 3 /...

Python facenet进行人脸识别测试过程解析

Python facenet进行人脸识别测试过程解析

1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码: https://github.com/davidsandberg/facenet...

Python使用迭代器捕获Generator返回值的方法

本文实例讲述了Python使用迭代器捕获Generator返回值的方法。分享给大家供大家参考,具体如下: 用for循环调用generator时,发现拿不到generator的return...

flask-socketio实现WebSocket的方法

【flask-socektio】 之前不知道在哪个场合下提到过如何从web后台向前台推送消息。听闻了反向ajax技术这种模式之后,大呼神奇,试了一下之后发现也确实可以用。不过,反向aj...