Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com6年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现k-means聚类算法

python实现k-means聚类算法

k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其...

Python实现的HMacMD5加密算法示例

本文实例讲述了Python实现的HMacMD5加密算法。分享给大家供大家参考,具体如下: 什么是 HMAC-MD5? 1、比如你和对方共享了一个密钥K,现在你要发消息给对方,既要保证消息...

python使用Turtle库绘制动态钟表

python使用Turtle库绘制动态钟表

Python函数库众多,而且在不断更新,所以学习这些函数库最有效的方法,就是阅读Python官方文档。同时借助Google和百度。 本文介绍的turtle库对应的官方文档地址 绘制动态钟...

Python数组条件过滤filter函数使用示例

使用filter函数,实现一个条件判断函数即可。 比如想过滤掉字符串数组中某个敏感词,示范代码如下: #filter out some unwanted tags def pass...

numpy的文件存储.npy .npz 文件详解

Numpy能够读写磁盘上的文本数据或二进制数据。 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式...