Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com5年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 提取文件的小程序

以前提取这些文件用的是一同事些的批处理文件;用起来不怎么顺手,刚好最近在学些python,所有就自己动手写了一个python提取文件的小程序;1、原理 提取文件的原理很简单,就是到一个指...

Python高阶函数、常用内置函数用法实例分析

本文实例讲述了Python高阶函数、常用内置函数用法。分享给大家供大家参考,具体如下: 高阶函数: 允许将函数作为参数传入另一个函数; 允许返回一个函数。 #返回值为函数...

Python高效编程技巧

下面我挑选出的这几个技巧常常会被人们忽略,但它们在日常编程中能真正的给我们带来不少帮助。 1. 字典推导(Dictionary comprehensions)和集合推导(Set comp...

python获取指定目录下所有文件名列表的方法

python获取指定目录下所有文件名列表的方法

本文实例讲述了python获取指定目录下所有文件名列表的方法。分享给大家供大家参考。具体实现方法如下: 这里python代码实现获取文件名列表的功能,可以指定文件中包含的字符,方便提取特...

在python中pandas读文件,有中文字符的方法

后面要加encoding='gbk' import pandas as pd datt=pd.read_csv('D:\python_prj_1\data_1.txt',encodi...