Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com6年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python方法的延迟加载的示例代码

数据挖掘的过程中,数据进行处理是一重要的环节,我们往往会将其封装成一个方法,而有的时候这一个方法可能会被反复调用,每一次都对数据进行处理这将是一个很耗时耗资源的操纵,那么有没有办法将计算...

基于python实现高速视频传输程序

今天要说的是一个高速视频流的采集和传输的问题,我不是研究这一块的,没有使用什么算法,仅仅是兴趣导致我很想搞懂这个问题.     1,首先是视频数据[摄像头图...

Python时间戳与时间字符串互相转换实例代码

复制代码 代码如下:#设a为字符串import timea = "2011-09-28 10:00:00" #中间过程,一般都需要将字符串转化为时间数组time.strptime(a,'...

Django框架视图函数设计示例

本文实例讲述了Django框架视图函数。分享给大家供大家参考,具体如下: 视图函数即为处理HTTP请求的python函数。一般情况下,视图函数的功能是通过模型层对象处理数据,然后通过下面...

Linux下python与C++使用dlib实现人脸检测

Linux下python与C++使用dlib实现人脸检测

python 与 C++ dlib人脸检测结果对比,供大家参考,具体内容如下 说明: 由于项目需求发现Linux下c++使用dlib进行人脸检测和python使用dlib检测,得到的结果...