Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com5年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3.6.3转化为win-exe文件发布的方法

各种坑 用py2exe,不支持,仅支持2.x 用cx_frezee,各种问题 方法 用pyinstaller。 安装时务必用pip3 install pyinstaller。 用pip...

PyQt Qt Designer工具的布局管理详解

PyQt Qt Designer工具的布局管理详解

前言 这节课很重要。。界面整洁美观与否就看布局了。。这里讲布局方法,至于设计的天赋与最终界面的美感那就看造化了。。 本文主要讲述Qt Designer工具实现界面控件布局管理,就是排列组...

详解多线程Django程序耗尽数据库连接的问题

Django的ORM是非常好用的,哪怕不是做Web项目也值得一用,所以网上也可以找到不少使用 Django 开发非Web项目的资料,因为除了ORM之个,命令行、配置文件等组件也非常好用。...

python getpass模块用法及实例详解

python getpass模块用法及实例详解

getpass import getpass username = input("username:") password = getpass.getpass("passwor...

利用Python学习RabbitMQ消息队列

RabbitMQ可以当做一个消息代理,它的核心原理非常简单:即接收和发送消息,可以把它想象成一个邮局:我们把信件放入邮箱,邮递员就会把信件投递到你的收件人处,RabbitMQ就是一个邮箱...