Python使用sklearn库实现的各种分类算法简单应用小结

yipeiwu_com6年前Python基础

本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下:

KNN

from sklearn.neighbors import KNeighborsClassifier
import numpy as np
def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
  model = KNeighborsClassifier(n_neighbors=10)#默认为5
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM

from sklearn.svm import SVC
def SVM(X,y,XX):
  model = SVC(c=5.0)
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM Classifier using cross validation

def svm_cross_validation(train_x, train_y):
  from sklearn.grid_search import GridSearchCV
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
  grid_search.fit(train_x, train_y)
  best_parameters = grid_search.best_estimator_.get_params()
  for para, val in list(best_parameters.items()):
    print(para, val)
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
  model.fit(train_x, train_y)
  return model

LR

from sklearn.linear_model import LogisticRegression
def LR(X,y,XX):
  model = LogisticRegression()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

决策树(CART)

from sklearn.tree import DecisionTreeClassifier
def CTRA(X,y,XX):
  model = DecisionTreeClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

随机森林

from sklearn.ensemble import RandomForestClassifier
def CTRA(X,y,XX):
  model = RandomForestClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

GBDT(Gradient Boosting Decision Tree)

from sklearn.ensemble import GradientBoostingClassifier
def CTRA(X,y,XX):
  model = GradientBoostingClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。

from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
def GNB(X,y,XX):
  model =GaussianNB()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted
def MNB(X,y,XX):
  model = MultinomialNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted
def BNB(X,y,XX):
  model = BernoulliNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python学习之编写查询ip程序

python学习之编写查询ip程序

公司服务器上的ip最少的也有100多个,有时候查到一个站的Ip, 不想通过OA去查,自己就用自己最近学的python知识,结合数据库,编写了一python小程序。实现只要输入主ip就能查...

Python实现的朴素贝叶斯算法经典示例【测试可用】

本文实例讲述了Python实现的朴素贝叶斯算法。分享给大家供大家参考,具体如下: 代码主要参考机器学习实战那本书,发现最近老外的书确实比中国人写的好,由浅入深,代码通俗易懂,不多说上代码...

Empty test suite.(PyCharm程序运行错误的解决方法)

Empty test suite.(PyCharm程序运行错误的解决方法)

运行程序test4_4.py时报错,Empty test suite. 查找资料发现原因: 默认情况下,PyCharm将检查以test开头的文件,它们是unittest.TestCas...

Python判断某个用户对某个文件的权限

在Python我们要判断一个文件对当前用户有没有读、写、执行权限,我们通常可以使用os.access函数来实现,比如: # 判断读权限 os.access(<my file&...

python实现移位加密和解密

python实现移位加密和解密

本文实例为大家分享了python实现移位加密和解密的具体代码,供大家参考,具体内容如下 代码很简单,就不多做解释啦。主要思路是将字符串转为Ascii码,将大小写字母分别移位密钥表示的位...