python 实现12bit灰度图像映射到8bit显示的方法

yipeiwu_com6年前Python基础

图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。

技术问题

1、显示器往往只有 8-bit, 而数据有 12- 至 16-bits。
2、如果将数据的 min 和 max 间 (dynamic range) 的之间转换到 8-bit 0-255 去,过程是个有损转换, 而且出来的图像往往突出的是些噪音。

算法分析

12-bit 到 8-bit 直接转换:

computeMinMax(pixel_val,  min,  max);  //  先算图像的最大和最小值 
for  (i  =  0;  i  <  nNumPixels;  i++) 
  disp_pixel_val[i]  =  (pixel_val[i]  -  min)*255.0/(double)(max-min);   

这个算法必须有,对不少种类的图像是很有效的:如 8-bit 图像,MRI, ECT, CR 等等。

python实现

def matrix2uint8(matrix):
  ''' 
matrix must be a numpy array NXN
Returns uint8 version
  '''
  m_min= np.min(matrix)
  m_max= np.max(matrix)
  matrix = matrix-m_min
  return(np.array(np.rint( (matrix-m_min)/float(m_max-m_min) * 255.0),dtype=np.uint8))
  #np.rint, Round elements of the array to the nearest integer.

def preprocess(img, crop=True, resize=True, dsize=(224, 224)):
  if img.dtype == np.uint8:
    img = img / 255.0

  if crop:
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
  else:
    crop_img = img

  if resize:
    norm_img = imresize(crop_img, dsize, preserve_range=True)
  else:
    norm_img = crop_img

  return (norm_img).astype(np.float32)
def deprocess(img):
  return np.clip(img * 255, 0, 255).astype(np.uint8)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现树的先序、中序、后序排序算法示例

本文实例讲述了Python实现树的先序、中序、后序排序算法。分享给大家供大家参考,具体如下: #encoding=utf-8 class Tree(): def __init__...

安装Python和pygame及相应的环境变量配置(图文教程)

安装Python和pygame及相应的环境变量配置(图文教程)

Hello,Everyone! Python是个好东西!好吧,以黎某人这寒碜的赞美之词,实在上不了台面,望见谅。那我们直接来上干货吧。 第一步:下载Python安装包https://ww...

python操作文件的参数整理

open() 方法 Python open() 方法用于打开一个文件,并返回文件对象,在对文件进行处理过程都需要使用到这个函数,如果该文件无法被打开,会抛出 OSError。 注意:使用...

PyTorch上搭建简单神经网络实现回归和分类的示例

PyTorch上搭建简单神经网络实现回归和分类的示例

本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一、PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.o...

python开头的coding设置方法

缘起: [root@CentOS7 code]# python multi_thread_mfw.py File "multi_thread_mfw.py", line 138...