在python中画正态分布图像的实例

yipeiwu_com6年前Python基础

1.正态分布简介

正态分布(normal distribtution)又叫做高斯分布(Gaussian distribution),是一个非常重要也非常常见的连续概率分布。正态分布大家也都非常熟悉,下面做一些简单的介绍。

假设随机变量XX服从一个位置参数为μμ、尺度参数为σσ的正态分布,则可以记为:

而概率密度函数为

2.在python中画正态分布直方图

先直接上代码

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt


def demo1():
  mu ,sigma = 0, 1
  sampleNo = 1000
  np.random.seed(0)
  s = np.random.normal(mu, sigma, sampleNo)

  plt.hist(s, bins=100, normed=True)
  plt.show()

上面是一个标准正态分布的直方图。最后输出的图像为:

很多同学心里会有疑惑:这个图像看上去虽然是有点奇怪,虽然形状有点像正态分布,但是差得还比较多嘛,不能算是严格意义上的正态分布。

为什么会有这种情况出现呢?其实原因很简单,代码中我们设定的smapleno = 1000。这个数量并不是很大,所以整个图像看起来分布并不是很规则,只是有大致的正态分布的趋势。如果我们将这个参数加大,相当于增加样本数量,那么整个图像就会更加接近正态分布的形状。跟抛硬币的原理一致,抛的次数越多,正面与反面的出现概率更接近50%。

如果我们将sampleno设置为1000000,分布图像如下。

下面这个图像是不是看起来就漂亮多了!

3.画直方图与概率分布曲线

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

def demo2():
  mu, sigma , num_bins = 0, 1, 50
  x = mu + sigma * np.random.randn(1000000)
  # 正态分布的数据
  n, bins, patches = plt.hist(x, num_bins, normed=True, facecolor = 'blue', alpha = 0.5)
  # 拟合曲线
  y = mlab.normpdf(bins, mu, sigma)
  plt.plot(bins, y, 'r--')
  plt.xlabel('Expectation')
  plt.ylabel('Probability')
  plt.title('histogram of normal distribution: $\mu = 0$, $\sigma=1$')

  plt.subplots_adjust(left = 0.15)
  plt.show()

最后得到的图像为:

以上这篇在python中画正态分布图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python IDLE入门简介

Python IDLE入门简介

IDLE是Python软件包自带的一个集成开发环境,初学者可以利用它方便地创建、运行、测试和调试Python程序。 参考: pip和pygal的安装实例教程 Python(一)运行环境搭...

Python缩进和冒号详解

Python缩进和冒号详解

对于Python而言代码缩进是一种语法,Python没有像其他语言一样采用{}或者begin...end分隔代码块,而是采用代码缩进和冒号来区分代码之间的层次。 缩进的空白数量是可变的,...

基于Python log 的正确打开方式

保存代码到文件:logger.py import os import logbook from logbook.more import ColorizedStderrHandler...

windows及linux环境下永久修改pip镜像源的方法

windows及linux环境下永久修改pip镜像源的方法

一、在windows环境下修改pip镜像源的方法(以python3.5为例) (1):在windows文件管理器中,输入 %APPDATA% (2):会定位到一个新的目录下,在该目...

在Django下测试与调试REST API的方法详解

在Django下测试与调试REST API的方法详解

对于大多数研发人员来说,都期望能找到一个良好的测试/调试方法,来提高工作效率和快速解决问题。所谓调试,偏重于对某个bug的查找、定位、修复;所谓测试,是检验某个功能是否达到预期效果。测试...