在python中画正态分布图像的实例

yipeiwu_com5年前Python基础

1.正态分布简介

正态分布(normal distribtution)又叫做高斯分布(Gaussian distribution),是一个非常重要也非常常见的连续概率分布。正态分布大家也都非常熟悉,下面做一些简单的介绍。

假设随机变量XX服从一个位置参数为μμ、尺度参数为σσ的正态分布,则可以记为:

而概率密度函数为

2.在python中画正态分布直方图

先直接上代码

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt


def demo1():
  mu ,sigma = 0, 1
  sampleNo = 1000
  np.random.seed(0)
  s = np.random.normal(mu, sigma, sampleNo)

  plt.hist(s, bins=100, normed=True)
  plt.show()

上面是一个标准正态分布的直方图。最后输出的图像为:

很多同学心里会有疑惑:这个图像看上去虽然是有点奇怪,虽然形状有点像正态分布,但是差得还比较多嘛,不能算是严格意义上的正态分布。

为什么会有这种情况出现呢?其实原因很简单,代码中我们设定的smapleno = 1000。这个数量并不是很大,所以整个图像看起来分布并不是很规则,只是有大致的正态分布的趋势。如果我们将这个参数加大,相当于增加样本数量,那么整个图像就会更加接近正态分布的形状。跟抛硬币的原理一致,抛的次数越多,正面与反面的出现概率更接近50%。

如果我们将sampleno设置为1000000,分布图像如下。

下面这个图像是不是看起来就漂亮多了!

3.画直方图与概率分布曲线

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

def demo2():
  mu, sigma , num_bins = 0, 1, 50
  x = mu + sigma * np.random.randn(1000000)
  # 正态分布的数据
  n, bins, patches = plt.hist(x, num_bins, normed=True, facecolor = 'blue', alpha = 0.5)
  # 拟合曲线
  y = mlab.normpdf(bins, mu, sigma)
  plt.plot(bins, y, 'r--')
  plt.xlabel('Expectation')
  plt.ylabel('Probability')
  plt.title('histogram of normal distribution: $\mu = 0$, $\sigma=1$')

  plt.subplots_adjust(left = 0.15)
  plt.show()

最后得到的图像为:

以上这篇在python中画正态分布图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python构造icmp echo请求和实现网络探测器功能代码分享

python发送icmp echo requesy请求复制代码 代码如下:import socketimport struct def checksum(source_string):&...

Python利用multiprocessing实现最简单的分布式作业调度系统实例

介绍 Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个...

python opencv实现图片旋转矩形分割

python opencv实现图片旋转矩形分割

有时候需要对有角度的矩形框内图像从原图片中分割出来。这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片。 参考:python opencv...

分享8点超级有用的Python编程建议(推荐)

分享8点超级有用的Python编程建议(推荐)

我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑总结出来的,现在在这里分享一下给大家,希望多少有些地方可以...

浅谈python中统计计数的几种方法和Counter详解

1) 使用字典dict() 循环遍历出一个可迭代对象中的元素,如果字典没有该元素,那么就让该元素作为字典的键,并将该键赋值为1,如果存在就将该元素对应的值加1. lists = ['...