python的几种矩阵相乘的公式详解

yipeiwu_com5年前Python基础

1. 同线性代数中矩阵乘法的定义: np.dot()

np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下Python代码:

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
# 2-D array: 3 x 2
two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])

two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two)
print('two_multi_res: %s' %(two_multi_res))

# 1-D array
one_dim_vec_one = np.array([1, 2, 3])
one_dim_vec_two = np.array([4, 5, 6])
one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two)
print('one_result_res: %s' %(one_result_res))

结果如下:

two_multi_res: [[22 28]
 [49 64]]
one_result_res: 32

2. 对应元素相乘 element-wise product: np.multiply(), 或 *

在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。见如下Python代码:

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])

# 对应元素相乘 element-wise product
element_wise = two_dim_matrix_one * another_two_dim_matrix_one
print('element wise product: %s' %(element_wise))

# 对应元素相乘 element-wise product
element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one)
print('element wise product: %s' % (element_wise_2))

结果如下:

element wise product: [[ 7 16 27]
 [16 35 6]]
element wise product: [[ 7 16 27]
 [16 35 6]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈对pytroch中torch.autograd.backward的思考

反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积 这里通过一段程序来演示基本的backward操作以及需要注意的地方 >...

Python使用functools模块中的partial函数生成偏函数

python 中提供一种用于对函数固定属性的函数(与数学上的偏函数不一样) # 通常会返回10进制 int('12345') # print 12345 # 使用参数 返回 8...

简单介绍Python中利用生成器实现的并发编程

我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。 多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库...

numpy中loadtxt 的用法详解

numpy中有两个函数可以用来读取文件,主要是txt文件, 下面主要来介绍这两个函数的用法 第一个是loadtxt, 其一般用法为 numpy.loadtxt(fname, dtype=...

Django 实现购物车功能的示例代码

Django 实现购物车功能的示例代码

购物车思路:使用 session 功能识别不同浏览器用户,使得用户不管是否登录了网站,均能够把想要购买的产品放在某个地方,之后随时可以显示或修改要购买的产品,等确定了之后再下订单,购物车...