详解使用python绘制混淆矩阵(confusion_matrix)

yipeiwu_com5年前Python基础

Summary

涉及到分类问题,我们经常需要通过可视化混淆矩阵来分析实验结果进而得出调参思路,本文介绍如何利用python绘制混淆矩阵(confusion_matrix),本文只提供代码,给出必要注释。

Code​

# -*-coding:utf-8-*-
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np

#labels表示你不同类别的代号,比如这里的demo中有13个类别
labels = ['A', 'B', 'C', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O']


'''
具体解释一下re_label.txt和pr_label.txt这两个文件,比如你有100个样本
去做预测,这100个样本中一共有10类,那么首先这100个样本的真实label你一定
是知道的,一共有10个类别,用[0,9]表示,则re_label.txt文件中应该有100
个数字,第n个数字代表的是第n个样本的真实label(100个样本自然就有100个
数字)。
同理,pr_label.txt里面也应该有1--个数字,第n个数字代表的是第n个样本经过
你训练好的网络预测出来的预测label。
这样,re_label.txt和pr_label.txt这两个文件分别代表了你样本的真实label和预测label,然后读到y_true和y_pred这两个变量中计算后面的混淆矩阵。当然,不一定非要使用这种txt格式的文件读入的方式,只要你最后将你的真实
label和预测label分别保存到y_true和y_pred这两个变量中即可。
'''
y_true = np.loadtxt('../Data/re_label.txt')
y_pred = np.loadtxt('../Data/pr_label.txt')

tick_marks = np.array(range(len(labels))) + 0.5

def plot_confusion_matrix(cm, title='Confusion Matrix', cmap=plt.cm.binary):
  plt.imshow(cm, interpolation='nearest', cmap=cmap)
  plt.title(title)
  plt.colorbar()
  xlocations = np.array(range(len(labels)))
  plt.xticks(xlocations, labels, rotation=90)
  plt.yticks(xlocations, labels)
  plt.ylabel('True label')
  plt.xlabel('Predicted label')
  cm = confusion_matrix(y_true, y_pred)
  np.set_printoptions(precision=2)
  
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print cm_normalized
plt.figure(figsize=(12, 8), dpi=120)

ind_array = np.arange(len(labels))
x, y = np.meshgrid(ind_array, ind_array)

for x_val, y_val in zip(x.flatten(), y.flatten()):
  c = cm_normalized[y_val][x_val]
  if c > 0.01:
    plt.text(x_val, y_val, "%0.2f" % (c,), color='red', fontsize=7, va='center', ha='center')
# offset the tick
plt.gca().set_xticks(tick_marks, minor=True)
plt.gca().set_yticks(tick_marks, minor=True)
plt.gca().xaxis.set_ticks_position('none')
plt.gca().yaxis.set_ticks_position('none')
plt.grid(True, which='minor', linestyle='-')
plt.gcf().subplots_adjust(bottom=0.15)

plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')
# show confusion matrix
plt.savefig('../Data/confusion_matrix.png', format='png')
plt.show()

Result

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python 中sys.stdin.readline()的用法

之前在Python中输入都是用的input(),但是看到大家都用sys.stdin.readline(),没办法那我也得用. python3中使用sys.stdin.readline()...

python实现人人自动回复、抢沙发功能

python实现人人自动回复、抢沙发功能

最近人人上看到有好友总是使用软件抢沙发,便决定用Python也写一个玩玩 一、状态回复表单POST 同样使用chrome开发者工具抓包 红色选择选中部分为必须提交的部分  提...

Python使用reportlab将目录下所有的文本文件打印成pdf的方法

本文实例讲述了Python使用reportlab将目录下所有的文本文件打印成pdf的方法。分享给大家供大家参考。具体实现方法如下: # -*- coding: utf8 -*- #...

python 实现求解字符串集的最长公共前缀方法

问题比较简单,给定一个字符串集合求解其中最长的公共前缀即可,这样的问题有点类似于最长公共子序列的问题,但是比求解最长最长公共子序列简单很多,因为是公共前缀,这样的话只需要挨个遍历即可,只...

Python 自动登录淘宝并保存登录信息的方法

Python 自动登录淘宝并保存登录信息的方法

前段时间时间为大家讲解了如何使用requests库模拟登录淘宝,而今天我们将对该功能进行丰富。所以我们把之前的那个版本定为1.0,而今天修改的版本定为2.0。版本的迭代意味着功能的升级,...