Python-Seaborn热图绘制的实现方法

yipeiwu_com6年前Python基础

制图环境:
pycharm
python-3.6
Seaborn-0.8

热图

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
np.random.seed(0)
uniform_data = np.random.rand(10, 12)
ax = sns.heatmap(uniform_data)
plt.show()

# 改变颜色映射的值范围
ax = sns.heatmap(uniform_data, vmin=0, vmax=1)
plt.show()

uniform_data = np.random.randn(10, 12)
#为以0为中心的数据绘制一张热图
ax = sns.heatmap(uniform_data, center=0)
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
#用行和列标签绘制
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")
# 绘制x-y-z的热力图,比如 年-月-销量 的热力图
f, ax = plt.subplots(figsize=(9, 6))
sns.heatmap(flights, ax=ax)
#设置坐标字体方向
label_y = ax.get_yticklabels()
plt.setp(label_y, rotation=360, horizontalalignment='right')
label_x = ax.get_xticklabels()
plt.setp(label_x, rotation=45, horizontalalignment='right')
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")
# 绘制x-y-z的热力图,比如 年-月-销量 的热力图
f, ax = plt.subplots(figsize=(9, 6))
#使用不同的颜色
sns.heatmap(flights, fmt="d",cmap='YlGnBu', ax=ax)
#设置坐标字体方向
label_y = ax.get_yticklabels()
plt.setp(label_y, rotation=360, horizontalalignment='right')
label_x = ax.get_xticklabels()
plt.setp(label_x, rotation=45, horizontalalignment='right')
plt.show()

注释热图

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")
# 绘制x-y-z的热力图,比如 年-月-销量 的热力图
f, ax = plt.subplots(figsize=(9, 6))
#绘制热力图,还要将数值写到热力图上
sns.heatmap(flights, annot=True, fmt="d", ax=ax)
#设置坐标字体方向
label_y = ax.get_yticklabels()
plt.setp(label_y, rotation=360, horizontalalignment='right')
label_x = ax.get_xticklabels()
plt.setp(label_x, rotation=45, horizontalalignment='right')
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")
# 绘制x-y-z的热力图,比如 年-月-销量 的热力图
f, ax = plt.subplots(figsize=(9, 6))
#绘制热力图,还要将数值写到热力图上
#每个网格上用线隔开
sns.heatmap(flights, annot=True, fmt="d", linewidths=.5, ax=ax)
#设置坐标字体方向
label_y = ax.get_yticklabels()
plt.setp(label_y, rotation=360, horizontalalignment='right')
label_x = ax.get_xticklabels()
plt.setp(label_x, rotation=45, horizontalalignment='right')
plt.show()

聚类热图

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")
# 绘制x-y-z的热力图,比如 年-月-销量 的聚类热图
g= sns.clustermap(flights, fmt="d",cmap='YlGnBu')
ax = g.ax_heatmap
label_y = ax.get_yticklabels()
plt.setp(label_y, rotation=360, horizontalalignment='left')
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
iris = sns.load_dataset("iris")
species = iris.pop("species")
#设置图片大小
g= sns.clustermap(iris, fmt="d",cmap='YlGnBu',figsize=(6,9))
ax = g.ax_heatmap
label_y = ax.get_yticklabels()
plt.setp(label_y, rotation=360, horizontalalignment='left')
#设置图片名称,分辨率,并保存
plt.savefig('cluster.tif',dpi = 300)
plt.show()

注:更多参数的用法请查阅官方文档

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python和GO语言实现的消息摘要算法示例

Python和GO语言实现的消息摘要算法示例

常用的消息摘要算法有MD5和SHA,这些算法在python和go的库中都有,需要时候调用下就OK了,这里总结下python和go的实现。 一、python消息摘要示例 代码如下: 复制代...

influx+grafana自定义python采集数据和一些坑的总结

influx+grafana自定义python采集数据和一些坑的总结

先上网卡数据采集脚本,这个基本上是最大的坑,因为一些数据的类型不正确会导致no datapoint的错误,真是令人抓狂,注意其中几个key的值必须是int或者float类型,如果你不慎写...

Pytorch 中retain_graph的用法详解

用法分析 在查看SRGAN源码时有如下损失函数,其中设置了retain_graph=True,其作用是什么? ############################...

python getopt模块使用实例解析

这篇文章主要介绍了python getopt模块使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 官方介绍地址: ...

对DataFrame数据中的重复行,利用groupby累加合并的方法详解

对DataFrame数据中的重复行,利用groupby累加合并的方法详解

pandas读取一组数据,可能存在重复索引,虽然可以利用drop_duplicate直接删除,但是会删除重要信息。 比如同一ID用户,多次登录学习时间。要计算该用户总共‘'学习时间‘',...