用Python识别人脸,人种等各种信息

yipeiwu_com5年前Python基础

最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特的性别,年龄,颜值,表情等数据的挖掘。

基础的识别用dlib来实现,dlib是一个机器学习的包,主要用C++写的,但是也有Python版本。其中最流行的一个功能是Facial Landmark Detection, 配备已经训练好的轮廓预测模型,叫shape_predictor_68_face_landmarks.dat, 从名字就可以看出,它可以检测出面部的68个关键点,包括五官和外轮廓等。

安装dlib会花比较长时间,因为依赖包有十个左右,装完了dlib别忘了下载predictor数据文件。

wget

http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

pip install dlib

我在Adrian大神的代码做了一点修改和封装,先定位脸部的方框,box_face画出方框,在此基础上可选调用tag_face_number来标注脸的标号或者draw_face_landmarks来标注特征点,也可以直接调用count_faces来统计脸的个数,mark_all_faces给所有的脸把所有信息都加上。


拿九张模特图来试试,半脸的不行,侧的太厉害不行,其它都能识别出来。

一张图多张脸的也毫无压力

接下来性别和年龄就不好做了,必须通过机器训练数据,还没时间摸透,又想尽快拿到这些标注,于是先走捷径去调face++的API, 注册个账号申请key和secret即可,免费账户有qps限制,且一张照片内最多支持五人识别。

官方的代码示例极差,而且还是只支持Python2的, 收先要改写一下。Attribute中有很多数据可以拿,你想的到的想不到的都有,甚至包括颜值,人种等。颜值还算靠谱,范冰冰90分,凤姐49分,人种就难说了,欧美模特分分钟当成Asian.

机器说: 性别女,表情偏悲伤,颜值89分,28岁,亚洲人,基本没笑

{'image_id': 'wPGIyROqltTdjvRX3zopbg==', 'request_id': '1519574701,3113e37e-b000-4440-af08-871831cf1ba8', 'time_used': 355, 'faces': [{'attributes': {'emotion': {'sadness': 93.448, 'neutral': 4.114, 'disgust': 0.002, 'anger': 0.002, 'surprise': 2.414, 'fear': 0.002, 'happiness': 0.018}, 'beauty': {'female_score': 89.348, 'male_score': 88.925}, 'gender': {'value': 'Female'}, 'age': {'value': 28}, 'headpose': {'yaw_angle': 17.526142, 'pitch_angle': 11.047059, 'roll_angle': 19.623343}, 'smile': {'threshold': 30.1, 'value': 28.532}, 'ethnicity': {'value': 'Asian'}}, 'face_rectangle': {'width': 202, 'top': 103, 'left': 69, 'height': 202}, 'face_token': '7be6a72f497ed16cc7883424584052c5'}]}

机器说: 性别男,表情很快乐,颜值52分,61岁,黑人,大笑

{'image_id': 'YZ5wzeVDiAgCN9yIFX44Gw==', 'request_id': '1519574926,31f6d4d8-bdf6-4863-b29a-cf61ff04ffbe', 'time_used': 323, 'faces': [{'attributes': {'emotion': {'sadness': 0.0, 'neutral': 0.0, 'disgust': 0.0, 'anger': 0.0, 'surprise': 0.0, 'fear': 0.0, 'happiness': 99.999}, 'beauty': {'female_score': 62.678, 'male_score': 51.847}, 'gender': {'value': 'Male'}, 'age': {'value': 61}, 'headpose': {'yaw_angle': 2.6326802, 'pitch_angle': 11.909821, 'roll_angle': -11.707241}, 'smile': {'threshold': 30.1, 'value': 99.081}, 'ethnicity': {'value': 'Black'}}, 'face_rectangle': {'width': 208, 'top': 88, 'left': 120, 'height': 208}, 'face_token': '19067cf0f5358312c109a0e70bab62ae'}]}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python异步存储数据详解

在Python中,数据存储方式分为同步存储和异步存储。同步写入速度比较慢,而爬虫速度比较快,有可能导致数据保存不完整,一部分数据没有入库。而异步可以将爬虫和写入数据库操作分开执行,互不影...

基于Python的图像数据增强Data Augmentation解析

基于Python的图像数据增强Data Augmentation解析

1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果。在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁...

python实现机械分词之逆向最大匹配算法代码示例

python实现机械分词之逆向最大匹配算法代码示例

逆向最大匹配方法 有正即有负,正向最大匹配算法大家可以参阅/post/127404.htm 逆向最大匹配分词是中文分词基本算法之一,因为是机械切分,所以它也有分词速度快的优点,且逆向最大...

Python urls.py的三种配置写法实例详解

urls.py的配置写法一般有三种方式。 1. 第一种是导入视图的方式,就是 The Django Book 里面样例的写法: from blog.views import inde...

python处理document文档保留原样式

document文档格式、线段、图片、页眉页脚等都不变,供大家参考,具体内容如下 # -*- coding: utf-8 -*- # @Time : 2019/5/6 11:46...