详解python实现数据归一化处理的方式:(0,1)标准化

yipeiwu_com5年前Python基础

在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0, 1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系“压缩”到(0,1)的范围类。

通常(0, 1)标注化处理的公式为:

即将样本点的数值减去最小值,再除以样本点数值最大与最小的差,原理公式就是这么基础。

下面看看使用python语言来编程实现吧

import numpy as np
import matplotlib.pyplot as plt


def noramlization(data):
  minVals = data.min(0)
  maxVals = data.max(0)
  ranges = maxVals - minVals
  normData = np.zeros(np.shape(data))
  m = data.shape[0]
  normData = data - np.tile(minVals, (m, 1))
  normData = normData/np.tile(ranges, (m, 1))
  return normData, ranges, minVals


x = np.array([[78434.0829, 26829.86612], [78960.4042, 26855.13451], [72997.8308, 26543.79201],
       [74160.2849, 26499.56629], [75908.5746, 26220.11996], [74880.6989, 26196.03995],
       [74604.7169, 27096.87862], [79547.6796, 25986.68579], [74997.7791, 24021.50132],
       [74487.4915, 26040.18441], [77134.2636, 24647.274],  [74975.2792, 24067.31441],
       [76013.5305, 24566.02273], [79191.518, 26840.29867], [80653.4589, 25937.22248],
       [79185.9935, 26996.18228], [74426.881, 24227.71439], [73246.4295, 26561.59268],
       [77963.1478, 25580.05298], [74469.8778, 26082.15448], [81372.3787, 26649.69232],
       [76826.8262, 24549.77367], [77774.2608, 25999.96037], [79673.1361, 25229.04353],
       [75251.7951, 24902.72185], [78458.073, 23924.15117], [82247.5439, 29671.33493],
       [82041.2247, 27903.34268], [80083.2029, 28692.35517], [80962.0043, 28519.81002],
       [79799.8328, 28740.27736], [80743.9947, 28862.75402], [80888.449, 29724.53706],
       [81768.4638, 30180.20618], [80283.8783, 30417.55057], [79460.7078, 29092.52867],
       [75514.1202, 28071.73721], [80595.5945, 30292.25917], [80750.4876, 29651.32254],
       [80020.662, 30023.70025], [82992.3395, 29466.83067], [80185.5946, 29943.15481],
       [81854.6163, 29846.18257], [81526.4017, 30218.27078], [79174.5312, 29960.69999],
       [78112.3051, 26467.57545], [80262.4121, 29340.23218], [81284.9734, 28257.71529],
       [81928.9905, 28752.84811], [80739.2727, 29288.85126], [83135.3435, 30223.4974],
       [83131.8223, 29049.10112], [82549.9076, 28910.15209], [81574.0822, 28326.55367],
       [80507.399, 28553.56851], [82956.2103, 29157.62372], [81909.7132, 29359.24497],
       [80893.5603, 29326.64155], [82520.1272, 30424.96703], [82829.8548, 31062.24418],
       [80532.1495, 29198.10407], [80112.7963, 29143.47905], [81175.0882, 28443.10574]])

newgroup, _, _ = noramlization(x)
newdata = newgroup
plt.scatter(x[:, 0], x[:, 1], marker='*', c='r', s=24)
plt.show()
print(len(x[:, 0]))
print(len(x[:, 1]))
print(newdata)

将数据进行归一化处理后,并使用matplotlib绘制出处理后的散点图分布如下:


可以看到数据的数值范围均为(0,1)之间了

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python查看模块,对象的函数方法

python查看模块,对象的函数方法

这段时间在用libev的python版本事件模型,总共只有一个py.so文件,没有.py文件查看源码查看接口,最开始用shell命令直接查看.so的接口不尽人意。然后发现python提供...

使用 Supervisor 监控 Python3 进程方式

使用 Supervisor 监控 Python3 进程方式

首先说明,Supervisor 只能安装在 Python 2.x 环境中! 但是基本上所有的 Linux 都同时预装了 Python 2.x 和 Python 3.x 版本,并且调用 p...

python-opencv在有噪音的情况下提取图像的轮廓实例

python-opencv在有噪音的情况下提取图像的轮廓实例

对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体。 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分。...

TensorFlow 实战之实现卷积神经网络的实例讲解

本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。 一、相关性概念 1、卷积神经网络(Convolu...

Python实现简单层次聚类算法以及可视化

本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下 基本的算法思路就是:把当前组间距离最小的两组合并成一组。 算法的差异在算法如何确定组件的距离,...