Tensorflow实现神经网络拟合线性回归

yipeiwu_com5年前Python基础

本文实例为大家分享了Tensorflow实现神经网络拟合线性回归的具体代码,供大家参考,具体内容如下

一、利用简单的一层神经网络拟合一个函数 y = x^2 ,其中加入部分噪声作为偏置值防止拟合曲线过拟合

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
# 生成-0.5到0.5间均匀发布的200个点,将数据变为二维,200行一列的数据
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
 
# 生成一些噪音数据
noise = np.random.normal(0, 0.02, x_data.shape)
 
# 定义y与x的关系
y_data = np.square(x_data) + noise
 
# 定义两个占位符
x = tf.placeholder(tf.float32, [None, 1]) # 形状为n行1列,同x_data的shape
y = tf.placeholder(tf.float32, [None, 1])
 
# 定义神经网络
 
# 定义中间层,因为每个x是一维,所以只需1个神经元,定义中间层的连接神经元是10
# 矩阵:[a, b]×[b, c] = [a, c] 
L1_weights = tf.Variable(tf.random_normal([1, 10])) 
L1_bias = tf.Variable(tf.zeros([1, 10]))
L1_weights_bias = tf.matmul(x, L1_weights) + L1_bias
L1 = tf.nn.tanh(L1_weights_bias)
 
# 定义输出层,每个x只有一个神经元
L2_weights = tf.Variable(tf.random_normal([10, 1]))
L2_bias = tf.Variable(tf.zeros([1, 1]))
L2_weights_bias = tf.matmul(L1, L2_weights) + L2_bias
L2 = tf.nn.tanh(L2_weights_bias)
 
# 定义损失函数
loss = tf.reduce_mean(tf.square(y - L2))
 
# 梯度下降最小化损失函数
optimizer = tf.train.GradientDescentOptimizer(0.1)
 
train_step = optimizer.minimize(loss)
 
# 全局变量初始化
init = tf.global_variables_initializer()
 
# 定义会话
with tf.Session() as sess:
 sess.run(init)
 for _ in range(2000):
  sess.run(train_step, feed_dict={x:x_data, y:y_data})
  
 # 获取预测值
 predict = sess.run(L2, feed_dict={x:x_data})
 
 # 画图
 plt.figure()
 # 画出散点
 plt.scatter(x_data, y_data)
 # 画出拟合的曲线
 plt.plot(x_data, predict)
 
 plt.show()

二、代码运行效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python读取html中指定元素生成excle文件示例

Python2.7编写的读取html中指定元素,并生成excle文件 复制代码 代码如下:#coding=gbkimport stringimport codecsimport os,t...

Python实现注册、登录小程序功能

Python实现注册、登录小程序功能

主要实现功能 1、用户输入用户名,在用户名文件中查找对应的用户,若无对应用户名则打印输入错误 2、用户名输入正确后,进行密码匹配。输入密码正确则登录成功,否则重新输入。 3、连续输错三次...

python中函数默认值使用注意点详解

当在函数中定义默认值时,值初始化只会进行一次,就是执行到def methodname时执行。看下面代码: from datetime import datetime def te...

Python:二维列表下标互换方式(矩阵转置)

我就废话不多说了,直接上代码吧! #!/usr/bin/env python # coding:UTF-8 """ @version: python3.x @author:曹...

python3+PyQt5 使用三种不同的简便项窗口部件显示数据的方法

python3+PyQt5 使用三种不同的简便项窗口部件显示数据的方法

本文通过将同一个数据集在三种不同的简便项窗口部件中显示。三个窗口的数据得到实时的同步,数据和视图分离。当添加或删除数据行,三个不同的视图均保持同步。数据将保存在本地文件中,而非数据库。对...