python之拟合的实现

yipeiwu_com6年前Python基础

一、多项式拟合

多项式拟合的话,用的的是numpy这个库的polyfit这个函数。那么多项式拟合,最简单的当然是,一次多项式拟合了,就是线性回归。直接看代码吧

import numpy as np
 
def linear_regression(x,y):
 #y=bx+a,线性回归
 num=len(x)
 b=(np.sum(x*y)-num*np.mean(x)*np.mean(y))/(np.sum(x*x)-num*np.mean(x)**2)
 a=np.mean(y)-b*np.mean(x)
 return np.array([b,a])
def f(x):
 return 2*x+1
x=np.linspace(-5,5)
y=f(x)+np.random.randn(len(x))#加入噪音
y_fit=np.polyfit(x,y,1)#一次多项式拟合,也就是线性回归
print(linear_regression(x,y))
print(y_fit)

手写线性回归我还是会的,然后我们来看下输出:

[1.9937839 1.24167225]
[1.9937839 1.24167225]

由于有random每次显示的结果都不一样,但很明显的是上下两个print是意料之中的一样,emmmmm,一次多项式拟合的源代码应该就是像我写的那样。好了,那么一次以上呢?咳咳,我数学不算太好,还是老老实实用库函数吧,顺便画下图,见识它的威力。

import numpy as np
from matplotlib import pyplot as plt
 
def f(x):
 return x**2+1
def f_fit(x,y_fit):
 a,b,c=y_fit.tolist()
 return a*x**2+b*x+c
x=np.linspace(-5,5)
y=f(x)+np.random.randn(len(x))#加入噪音
y_fit=np.polyfit(x,y,2)#二次多项式拟合
y_show=np.poly1d(y_fit)#函数优美的形式
print(y_show)#打印
y1=f_fit(x,y_fit)
plt.plot(x,f(x),'r',label='original')
plt.scatter(x,y,c='g',label='before_fitting')#散点图
plt.plot(x,y1,'b--',label='fitting')
plt.title('polyfitting')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()#显示标签
plt.show()

输出:

2
1.001 x - 0.04002 x + 0.8952

拟合效果看起来还是不错的。

二、各种函数的拟合

一般来说,多项式的拟合就能拟合很多函数了,比如指数函数,取对数就能化为多项式函数,甚至是一次多项式函数。可是,那些三角函数之类的复杂函数不能化为多项式去拟合,怎么办呢?要用到scipy.optimize的curve_fit函数了。

直接贴代码:

import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
 
def f(x):
 return 2*np.sin(x)+3
def f_fit(x,a,b):
 return a*np.sin(x)+b
def f_show(x,p_fit):
 a,b=p_fit.tolist()
 return a*np.sin(x)+b
x=np.linspace(-2*np.pi,2*np.pi)
y=f(x)+0.5*np.random.randn(len(x))#加入了噪音
p_fit,pcov=curve_fit(f_fit,x,y)#曲线拟合
print(p_fit)#最优参数
print(pcov)#最优参数的协方差估计矩阵
y1=f_show(x,p_fit)
plt.plot(x,f(x),'r',label='original')
plt.scatter(x,y,c='g',label='before_fitting')#散点图
plt.plot(x,y1,'b--',label='fitting')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

输出:

[1.91267059 3.04489528]
[[ 9.06910892e-03 -1.83703696e-11]
[-1.83703696e-11 4.44386331e-03]]

使用方法基础的就是这样了。然后更多详细的参数的使用就是要看官网了。

1、https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

2、https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.curve_fit.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy创建单位矩阵和对角矩阵的实例

在学习linear regression时经常处理的数据一般多是矩阵或者n维向量的数据形式,所以必须对矩阵有一定的认识基础。 numpy中创建单位矩阵借助identity()函数。更为准...

一行Python代码制作动态二维码的实现

一行Python代码制作动态二维码的实现

在GitHub上发现了一个比较有意思的项目,只需要一行Python代码就可以快捷方便生成普通二维码、艺术二维码(黑白/彩色)和动态GIF二维码。 GitHub网站参加:https://g...

Python编程之黑板上排列组合,你舍得解开吗

考虑这样一个问题,给定一个矩阵(多维数组,numpy.ndarray()),如何shuffle这个矩阵(也就是对其行进行全排列),如何随机地选择其中的k行,这叫组合,实现一种某一维度空间...

django ManyToManyField多对多关系的实例详解

django ManyToManyField多对多关系的实例详解

Django 的 ORM 有多种关系:一对一,多对一,多对多 各自定义的方式为 : 一对一: OneToOneField 多对一: ForeignKey 多对多: ManyToManyF...

详解如何从TensorFlow的mnist数据集导出手写体数字图片

详解如何从TensorFlow的mnist数据集导出手写体数字图片

在TensorFlow的官方入门课程中,多次用到mnist数据集。 mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-...