python plotly绘制直方图实例详解

yipeiwu_com6年前Python基础

计算数值出现的次数

import cufflinks as cf
cf.go_offline()
import numpy as np
import pandas as pd

set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39, 29.4, 43.96, 6.12, 15.03, 2.68, 14.25, 7.9, 2.22, 15.74, 8.83, 8.18, 7.21, 30.38,25.46, 8.53, 8.05, 11.04, 24.95, 5.19, 6.8, 8.19, 5.44, 21.05, 7.06, 6.67, 18.61, 5.44, 2.9]

no_slippage_avg_cost = [22.04,21.01,17.13,9.07,9.41,3.65,19.67,7.02,11.22,10.31,5.11,24.01,12.04,8.14,8.08,9.29,3.93,4.24,18.62,8.23,7.86,5.4,29.44,44.01,6.13,15.05,2.68,14.27,7.91,2.22, 15.76, 8.84, 8.19, 7.22, 30.42, 25.49, 8.54, 8.06, 11.05, 24.98, 5.2, 6.81, 8.2, 5.45, 21.08, 7.07, 6.68,18.63,5.45,2.9]

diff = (np.array(no_slippage_avg_cost) - np.array(set_slippage_avg_cost)) / np.array(set_slippage_avg_cost)

pd.Series(diff).iplot(kind='histogram', bins=100, title='(np.array(no_slippage_avg_cost) - np.array(set_slippage_avg_cost)) / np.array(set_slippage_avg_cost)')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pycharm 批量修改变量名称的方法

pycharm 批量修改变量名称的方法

当代码已经写得差不多,发现某个变量名需要修改,但代码中很多地方都有该变量,一一修改太麻烦了,在不同的情景下,可以采取更加简便的方法,如下介绍: 方法一:rename方法 S1 把光标移动...

详解Python的Django框架中inclusion_tag的使用

另外一类常用的模板标签是通过渲染 其他 模板显示数据的。 比如说,Django的后台管理界面,它使用了自定义的模板标签来显示新增/编辑表单页面下部的按钮。 那些按钮看起来总是一样的,但是...

TensorFlow实现模型评估

TensorFlow实现模型评估

我们需要评估模型预测值来评估训练的好坏。 模型评估是非常重要的,随后的每个模型都有模型评估方式。使用TensorFlow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评...

浅谈Python的条件判断语句if/else语句

计算机之所以能做很多自动化的任务,因为它可以自己做条件判断。 比如,输入用户的年龄,根据年龄打印不同的内容。。。 Python程序中,能让计算机自己作出判断的语句就是if语句: 例:...

numpy 计算两个数组重复程度的方法

最近有个需求,是做两个数组重复程度计算,麻烦就麻烦在单个数组的元素有可能重复,处理思路如下: 1. 找到重复元素 2. 元素个数统计,利用np.bincount转换,即元素个数统计到元素...