python plotly绘制直方图实例详解

yipeiwu_com6年前Python基础

计算数值出现的次数

import cufflinks as cf
cf.go_offline()
import numpy as np
import pandas as pd

set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39, 29.4, 43.96, 6.12, 15.03, 2.68, 14.25, 7.9, 2.22, 15.74, 8.83, 8.18, 7.21, 30.38,25.46, 8.53, 8.05, 11.04, 24.95, 5.19, 6.8, 8.19, 5.44, 21.05, 7.06, 6.67, 18.61, 5.44, 2.9]

no_slippage_avg_cost = [22.04,21.01,17.13,9.07,9.41,3.65,19.67,7.02,11.22,10.31,5.11,24.01,12.04,8.14,8.08,9.29,3.93,4.24,18.62,8.23,7.86,5.4,29.44,44.01,6.13,15.05,2.68,14.27,7.91,2.22, 15.76, 8.84, 8.19, 7.22, 30.42, 25.49, 8.54, 8.06, 11.05, 24.98, 5.2, 6.81, 8.2, 5.45, 21.08, 7.07, 6.68,18.63,5.45,2.9]

diff = (np.array(no_slippage_avg_cost) - np.array(set_slippage_avg_cost)) / np.array(set_slippage_avg_cost)

pd.Series(diff).iplot(kind='histogram', bins=100, title='(np.array(no_slippage_avg_cost) - np.array(set_slippage_avg_cost)) / np.array(set_slippage_avg_cost)')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

把JSON数据格式转换为Python的类对象方法详解(两种方法)

把JSON数据格式转换为Python的类对象方法详解(两种方法)

JOSN字符串转换为自定义类实例对象 有时候我们有这种需求就是把一个JSON字符串转换为一个具体的Python类的实例,比如你接收到这样一个JSON字符串如下: {"Name": "...

Python判断有效的数独算法示例

本文实例讲述了Python判断有效的数独算法。分享给大家供大家参考,具体如下: 一、题目 判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。 1. 数...

Python3中urlencode和urldecode的用法详解

在Python3中,将中文进行urlencode编码使用函数 urllib.parse.quote(string, safe='/', encoding=None, errors=N...

Python+pyplot绘制带文本标注的柱状图方法

Python+pyplot绘制带文本标注的柱状图方法

如下所示: import numpy as np import matplotlib.pyplot as plt # 生成测试数据 x = np.linspace(0, 10,...

基于python中theano库的线性回归

theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方 代码块...