pandas通过字典生成dataframe的方法步骤

yipeiwu_com5年前Python基础

1、将一个字典输入:

该字典必须满足:value是一个list类型的元素,且每一个key对应的value长度都相同:

(以该字典的key为columns)

>>> import pandas as pd
>>> a = [1,2,3,4,5]
>>> b = ["a","b","c"]
>>> c = 1
>>> df = pd.DataFrame({"A":a,"B":b,"C":c})
Traceback (most recent call last):
ValueError: arrays must all be same length
>>> df = pd.DataFrame([a,b]) # 作为list输入,list的元素必须也是list,加入c就错误
>>> df
  0 1 2  3  4
0 1 2 3 4.0 5.0
1 a b c NaN NaN

# 统一一下字典每个元素值的长度
>>> b = ["a","b","c","d","e"]
>>> c = ("232","sdf","345","asd",1)
>>> df = pd.DataFrame({"A":a,"B":b,"C":c})
>>> df
  A B  C
0 1 a 232
1 2 b sdf
2 3 c 345
3 4 d asd
4 5 e  1

2、将多个key相同的字典列输入:

输入为一个list,该list各个元素为dict,且key可以不同(以含最多的key的字典的key为columns):

>>> d1 = {"A":1,"B":2,"C":3}
>>> d2 = {"A":"a","B":"b",}
>>> d3 = {"A":(1,2),"B":"ab","C":3}
>>> li = [d1,d2,d3]
>>> df = pd.DataFrame(li)
>>> df
    A  B  C
0    1  2 3.0
1    a  b NaN
2 (1, 2) ab 3.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas中的series数据类型详解

本文介绍了pandas中的series数据类型详解,分享给大家,具体如下: import pandas as pd import numpy as np import names...

Python之指数与E记法的区别详解

不要把自乘得到幂(也称为求幂)和E记法弄混了 3**5表示3的5次幂,也就是3*3*3*3*3,等于243 3e5表示3乘以10的5次幂,也就是3*10*10*10*10*10,结果等于...

Python实现字符串匹配的KMP算法

kmp算法 KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。...

在Python的Django框架中创建和使用模版

如何使用模板系统 让我们深入研究模板系统,你将会明白它是如何工作的。但我们暂不打算将它与先前创建的视图结合在一起,因为我们现在的目的是了解它是如何独立工作的。 。 (换言之, 通常你会将...

python sqlite的Row对象操作示例

本文实例讲述了python sqlite的Row对象操作。分享给大家供大家参考,具体如下: 一 代码 import sqlite3 conn=sqlite3.connect("tes...