Django Celery异步任务队列的实现

yipeiwu_com5年前Python基础

背景

在开发中,我们常常会遇到一些耗时任务,举个例子:

上传并解析一个 1w 条数据的 Excel 文件,最后持久化至数据库。

在我的程序中,这个任务耗时大约 6s,对于用户来说,6s 的等待已经是个灾难了。

比较好的处理方式是:

  1. 接收这个任务的请求
  2. 将这个任务添加到队列中
  3. 立即返回「操作成功,正在后台处理」的字样
  4. 后台消费这个队列,执行这个任务

我们按照这个思路,借助 Celery 进行实现。

实现

本文所使用的环境如下:

  • Python 3.6.7
  • RabbitMQ 3.8
  • Celery 4.3

使用 Docker 安装 RabbitMQ

Celery 依赖一个消息后端,可选方案有 RabbitMQ, Redis 等,本文选用 RabbitMQ 。

同时为了安装方便,RabbitMQ 我直接使用 Docker 安装:

docker run -d --name anno-rabbit -p 5672:5672 rabbitmq:3

启动成功后,即可通过 amqp://localhost 访问该消息队列。

安装并配置 Celery

Celery 是 Python 实现的工具,安装可以直接通过 Pip 完成:

pip install celery

同时假设当前我的项目文件夹为 proj ,项目名为 myproj ,应用名为 myapp

安装完成后,在 proj/myproj/ 路径下创建一个 celery.py 文件,用来初始化 Celery 实例:

proj/myproj/celery.py

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery, platforms

# set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myproj.settings')

app = Celery('myproj',
       broker='amqp://localhost//',
       backend='amqp://localhost//')

# Using a string here means the worker don't have to serialize
# the configuration object to child processes.s
# - namespace='CELERY' means all celery-related configuration keys
#  should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')

# Load task modules from all registered Django app configs.
app.autodiscover_tasks()

然后在 proj/myproj/__init__.py 中添加对 Celery 对象的引用,确保 Django 启动后能够初始化 Celery:

proj/myproj/__init__.py

from __future__ import absolute_import, unicode_literals

# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app

__all__ = ('celery_app',)

无其他特殊配置的话,Celery 的基本配置就是这些。

编写一个耗时任务

为了模拟一个耗时任务,我们直接创建一个方法,使其「睡」10s ,并将其设置为 Celery 的任务:

proj/myapp/tasks.py

import time
from myproj.celery import app as celery_app

@celery_app.task
def waste_time():
  time.sleep(10)
  return "Run function 'waste_time' finished."

启动 Celery Worker

Celery 配置完成,并且任务创建成功后,我们以异步任务的模式启动 Celery :

celery -A myproj worker -l info

注意到我强调了异步模式,是因为 Celery 除了支持异步任务,还支持定时任务,因此启动时候要指明。

同时要注意,Celery 一旦启动,对 Task(此处为 waste_time) 的修改必须重启 Celery 才会生效。

任务调用

在请求处理的逻辑代码中,调用上面创建好的任务:

proj/myapp/views.py

from django.http import JsonResponse
from django.views.decorators.http import require_http_methods
from .tasks import waste_time

@require_http_methods(["POST"])
def upload_files(request):
  waste_time.delay()
  # Status code 202: Accepted, 表示异步任务已接受,可能还在处理中
  return JsonResponse({"results": "操作成功,正在上传,请稍候..."}, status=202)

调用 waste_time.delay() 方法后, waste_time 会被加入到任务队列中,等待空闲的 Celery Worker 调用。

效果

当我们发送请求时,这个接口会直接返回 {"results": "操作成功,正在上传,请稍候..."} 的响应内容而非卡住十秒,用户体验要好许多。

总结

用 Celery 处理这种异步任务是 Python 常用的方法,虽然实际执行成功耗时不变甚至有所增加(如 Worker 繁忙导致处理滞后),但是对于用户体验来说更容易接受,点击上传大文件后可以继续处理其他事务,而不需要在页面等待。
Celery 还有更多用法本文未介绍到,其文档已经非常详尽,有需要可直接参考。

参考

http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html

https://hub.docker.com/_/rabbitmq

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Win7 64位下python3.6.5安装配置图文教程

Win7 64位下python3.6.5安装配置图文教程

python安装教程,分享给大家。 一、安装python 1、首先进入网站下载:点击打开链接(或自己输入网址),进入之后如下图,选择图中红色圈中区域进行下载。 2、下载完成后如下图所示...

pandas string转dataframe的方法

今天业务上碰到用pandas处理一个大文件的内存不够问题,需要做concat 合并多个文件,每个文件数据在1.4亿行左右。当时第一反应是把dataframe分割成多块小文件处理,后面发现...

Python标准库笔记struct模块的使用

最近在学习python网络编程这一块,在写简单的socket通信代码时,遇到了struct这个模块的使用,当时不太清楚这到底有和作用,后来查阅了相关资料大概了解了,在这里做一下简单的总结...

Python中的jquery PyQuery库使用小结

pyquery库是jQuery的Python实现,可以用于解析HTML网页内容,使用方法:复制代码 代码如下:from pyquery import PyQuery as pq1、可加载...

使用PyCharm进行远程开发和调试的实现

使用PyCharm进行远程开发和调试的实现

你是否经常要在Windows 7或MAC OS X上面开发Python或Web应用程序,但是它们最后需要在linux上面来运行呢? 我们经常会碰到开发时没有问题但是到了正式的Linux环...