Python Pandas 如何shuffle(打乱)数据

yipeiwu_com6年前Python基础

在Python里面,使用Pandas里面的DataFrame来存放数据的时候想要把数据集进行shuffle会许多的方法,本文介绍两种比较常用而且简单的方法。

应用情景:

我们有下面以个DataFrame


我们可以看到BuyInter的数值是按照0,-1,-1,2,2,2,3,3,3,3这样排列的,我们希望不保持这个次序,但是同时列属性又不能改变,即如下效果:


实现方法:

最简单的方法就是采用pandas中自带的 sample这个方法。

假设df是这个DataFrame

df.sample(frac=1)

这样对可以对df进行shuffle。其中参数frac是要返回的比例,比如df中有10行数据,我只想返回其中的30%,那么frac=0.3。

有时候,我们可能需要打混后数据集的index(索引)还是按照正常的排序。我们只需要这样操作

df.sample(frac=1).reset_index(drop=True)

-------------------------------------分割线--------------------------------------------------------------

其实,sklearn(机器学习的库)中也有shuffle的方法。

from sklearn.utils import shuffle
df = shuffle(df)

另外,numpy库中也有进行shuffle的方法(不建议)

df.iloc[np.random.permutation(len(df))]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy的文件存储.npy .npz 文件详解

Numpy能够读写磁盘上的文本数据或二进制数据。 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式...

Python设计模式之享元模式原理与用法实例分析

Python设计模式之享元模式原理与用法实例分析

本文实例讲述了Python设计模式之享元模式原理与用法。分享给大家供大家参考,具体如下: 享元模式(Flyweight Pattern):运用共享技术有效地支持大量细粒度的对象. 下面是...

详解Python打包分发工具setuptools

详解Python打包分发工具setuptools

Python打包分发工具setuptools:曾经 Python 的分发工具是 distutils,但它无法定义包之间的依赖关系。setuptools 则是它的增强版,能帮助我们更好的创...

python实现决策树

本文实例为大家分享了python实现决策树的具体代码,供大家参考,具体内容如下 算法优缺点: 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据 缺...

Python数据结构与算法之图的基本实现及迭代器实例详解

Python数据结构与算法之图的基本实现及迭代器实例详解

本文实例讲述了Python数据结构与算法之图的基本实现及迭代器。分享给大家供大家参考,具体如下: 这篇文章参考自《复杂性思考》一书的第二章,并给出这一章节里我的习题解答。 (这书不到12...