Python使用Pandas对csv文件进行数据处理的方法

yipeiwu_com5年前Python基础

今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套装里面全默认配置的MySQL性能不给力,又尝试用R搞一下吧结果发现光加载csv文件就要3分钟左右的时间,相当不给力啊,翻了翻万能的知乎发现了Python下的一个神器包:Pandas(熊猫们?),加载这个140多M的csv文件两秒钟就搞定,后面的分类汇总等操作也都是秒开,太牛逼了!记录一下这次数据处理的过程:

使用Python3.6.4环境(对中文支持比较好),安装Pandas包

pip install pandas

基本使用:

import pandas as pd
import numpy as np #进行具体的sum,count等计算时候要用到的
df=pd.read_csv('d:/snp/nh23.csv') #这里绝对路径一定要用/,windows下也是如此,不加参数默认csv文件首行为标题行
df.head() #查看引入的csv文件前5行数据
df[“播种面积”] #查看指定列,后面跟[:5]查看前5行数据

df[“调查对象代码”].str[:6] #获取指定列前6位字符串

df["ADDR"]=df["调查对象代码"].str[:6] #将上一行处理后的6位地址码作为新列ADDR插入

gp=df.groupby(["ADDR","代码"])["播种面积"].sum() #根据ADDR和代码进行分组后对播种面积列进行sum求和计算

pv=df.pivot_table(["播种面积"],index="ADDR",columns="代码",margins=True,aggfunc=np.sum,fill_value=0) #数据透视图,对播种面积列进行汇总计算,index为行,columns为列,margins=True增加一个全部行汇总,aggfunc=np.sum透视图中对播种面积值进行sum计算,这里np是开头import的numpy as np,fill_value=0对空值进行0替换,否则没有数据会显示NaN

pv.to_csv("d:/snp/test.csv") #写入csv文件

总结

以上所述是小编给大家介绍的Python使用Pandas对csv文件进行数据处理的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

python中@property和property函数常见使用方法示例

本文实例讲述了python中@property和property函数常见使用方法。分享给大家供大家参考,具体如下: 1、基本的@property使用,可以把函数当做属性用 class...

Python合并多个装饰器小技巧

django程序,需要写很多api,每个函数都需要几个装饰器,例如 复制代码 代码如下: @csrf_exempt  @require_POST  def&nbs...

python不使用for计算两组、多个矩形两两间的iou方式

python不使用for计算两组、多个矩形两两间的iou方式

解决问题: 不使用for计算两组、多个矩形两两间的iou 使用numpy广播的方法,在python程序中并不建议使用for语句,python中的for语句耗时较多,如果使用numpy广播...

python实现根据文件关键字进行切分为多个文件的示例

来源:在工作过程中,需要统计一些trace信息,也就是一些打点信息,而打点是通过关键字进行的,因此对一个很大的文件进行分析时,想把两个打点之间的内容单独拷贝出来进行分析。 #!/us...

python得到单词模式的示例

python得到单词模式的示例

如下所示: def getWordPattern(word): pattern = [] usedLetter={} count=0 for i in word: if i...