详解pandas使用drop_duplicates去除DataFrame重复项参数

yipeiwu_com6年前Python基础

Pandas之drop_duplicates:去除重复项

方法

DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)

参数

这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行。返回DataFrame格式的数据。

  • subset : column label or sequence of labels, optional 用来指定特定的列,默认所有列
  • keep : {‘first', ‘last', False}, default ‘first' 删除重复项并保留第一次出现的项
  • inplace : boolean, default False 是直接在原来数据上修改还是保留一个副本

DataFrame中存在重复的行或者几行中某几列的值重复,这时候需要去掉重复行,示例如下:

data.drop_duplicates(subset=['A','B'],keep='first',inplace=True)

代码中subset对应的值是列名,表示只考虑这两列,将这两列对应值相同的行进行去重。默认值为subset=None表示考虑所有列。

keep='first'表示保留第一次出现的重复行,是默认值。keep另外两个取值为"last"和False,分别表示保留最后一次出现的重复行和去除所有重复行。

inplace=True表示直接在原来的DataFrame上删除重复项,而默认值False表示生成一个副本。

将副本赋值给dataframe:

data=data.drop_duplicates(subset=None,keep='first',inplace=False)

这一行代码与文章开头提到的那行代码效果等效,但是如果在该DataFrame上新增一列:

data['extra']=test_data['item_price_level']

就会报如下错误:

SettingWithCopyWarning:  A value is trying to be set on a copy of a slice from a DataFrame. 

所以如果想对DataFrame去重,最好采用开头提到的那行代码。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 参数列表中的self 显式不等于冗余

self在区分全局变量/函数和对象中的成员变量/函数十分有用。例如,它提供了一种作用域机制,我个人认为比Ruby的@和@@清晰多了,这可能是习惯使然吧,但它确实和C++、Java中的th...

基于MTCNN/TensorFlow实现人脸检测

基于MTCNN/TensorFlow实现人脸检测

人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等。对于opencv的人脸检测方法,有点是简单,快速;存在的问题是人脸检测效果不好。正面/垂直/光线...

python使用pil生成图片验证码的方法

本文实例讲述了python使用pil生成图片验证码的方法。分享给大家供大家参考。具体实现方法如下: # -*- coding: utf-8 -*- #导入三个模块 import Im...

Python中shapefile转换geojson的示例

shapefile转换geojson import shapefile import codecs from json import dumps # read the shapefi...

剖析Python的Tornado框架中session支持的实现代码

tornado 里面没有 session?不,当然有~我知道 github 上肯定有人帮我写好了~ O(∩_∩)O~       于是乎...