讲解Python3中NumPy数组寻找特定元素下标的两种方法

yipeiwu_com6年前Python基础

引子

Matlab中有一个函数叫做find,可以很方便地寻找数组内特定元素的下标,即:Find indices and values of nonzero elements。
这个函数非常有用。比如,我们想计算图1中点Q(x0, y0)抛物线的最短距离。一个可以实施的方法是:计算出抛物线上所有点到Q点的距离,找到最小值,用find函数找到最小值对应的下标,即M点横坐标和纵坐标对应的元素的下标,M点到Q点的距离就是最短距离。

这里写图片描述 

首先给出Matlab使用find函数实现的代码:

a = linspace(-5,5,1000);
b = a .^2;
x0 = 4;
y0 = 4;
dis = sqrt((a - x0).^2 + (b - y0).^2);
mm = find (dis == min(dis));
a0 = a(mm);
b0 = b(mm);
disMin = sqrt((a0 - x0).^2 + (b0 - y0).^2);
plot(a, b);
hold on;
scatter(x0, y0, 'k*');
scatter(a0, b0, 'k*');
xx = [a0, x0];
yy = [b0, y0];
plot(xx, yy);

一条朴素的抛物线

NumPy中的where函数

Syntax: np.where(conditions, [x,y])

具体实现代码如下:

import numpy as np
import math
import matplotlib.pyplot as plt

a = np.linspace(-5, 5, 10000)
b = a * a
x0 = 4
y0 =4
num = np.linspace(0, len(a) - 1, len(a))
dis = np.linspace(0, 0, len(a))
for k in num:
  k = int(k)
  dis[k] = dis[k] + math.sqrt((a[k] -x0) **2 + (b[k] - y0) **2)
disMin = min(dis)
disMinIndex = np.where(dis == disMin)
disMin0 = math.sqrt((a[disMinIndex] - x0) **2 + (b[disMinIndex] - y0) **2)
print('The mininum distance:',disMin)
print('The mininum distance:',disMin0)
print(type(dis))
a0 = a[disMinIndex]
b0 = b[disMinIndex]
fig = plt.figure(figsize = (6,6), dpi = 200)
ax1 = plt.subplot(1,1,1)
line11 = ax1.scatter(a,b,s = 1)
line12 = ax1.scatter(x0, y0, s = 100, marker = '*', color = 'darkorange')
line13 = ax1.scatter(a0, b0, s = 100, marker = '*', color = 'darkorange')
line14 = ax1.plot([x0,a0],[y0,b0], color = 'darkorange')
line15 = ax1.text(4.2,4,'Q(x0,y0)')
line16 = ax1.text(0.6,5, 'M(a0,b0)')
line18 = plt.xlim(-5,5)
line17 = plt.ylim(0,25)
plt.savefig('C:/Users/BRIAR/Desktop/index.png')
plt.show()

The mininum distance: 1.943317035
The mininum distance: 1.9433170350024023
class ‘numpy.ndarray'

Python画出来的漂亮的抛物线

List中的index函数

Syntax: List.index(aimElement)
注意:此处需将NumPy数组转换成List格式的数据。
具体实现代码如下:

import numpy as np
import math
import matplotlib.pyplot as plt

a = np.linspace(-5, 5, 10000)
b = a * a
x0 = 4
y0 =4
num = np.linspace(0, len(a) - 1, len(a))
dis = np.linspace(0, 0, len(a))
for k in num:
  k = int(k)
  dis[k] = dis[k] + math.sqrt((a[k] -x0) **2 + (b[k] - y0) **2)
disMin = min(dis)
disList = dis.tolist()
disMinIndex = disList.index(disMin)
disMin0 = math.sqrt((a[disMinIndex] - x0) **2 + (b[disMinIndex] - y0) **2)
print('The mininum distance:',disMin)
print('The mininum distance:',disMin0)
print(type(disList))
a0 = a[disMinIndex]
b0 = b[disMinIndex]
fig = plt.figure(figsize = (6,6), dpi = 200)
ax1 = plt.subplot(1,1,1)
line11 = ax1.scatter(a,b,s = 1)
line12 = ax1.scatter(x0, y0, s = 100, marker = '*', color = 'darkorange')
line13 = ax1.scatter(a0, b0, s = 100, marker = '*', color = 'darkorange')
line14 = ax1.plot([x0,a0],[y0,b0], color = 'darkorange')
line15 = ax1.text(4.2,4,'Q(x0,y0)')
line16 = ax1.text(0.6,5, 'M(a0,b0)')
line18 = plt.xlim(-5,5)
line17 = plt.ylim(0,25)
plt.savefig('C:/Users/BRIAR/Desktop/index.png')
plt.show()

The mininum distance: 1.943317035
The mininum distance: 1.9433170350024023
class ‘list'

Python画出来的漂亮的抛物线

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python装饰器的执行过程实例分析

本文实例分析了Python装饰器的执行过程。分享给大家供大家参考,具体如下: 今天看到一句话:装饰器其实就是对闭包的使用,仔细想想,其实就是这回事,今天又看了下闭包,基本上算是弄明白了闭...

Python列表推导式、字典推导式与集合推导式用法实例分析

本文实例讲述了Python列表推导式、字典推导式与集合推导式用法。分享给大家供大家参考,具体如下: 推导式comprehensions(又称解析式),是Python的一种独有特性。推导式...

python+opencv+caffe+摄像头做目标检测的实例代码

python+opencv+caffe+摄像头做目标检测的实例代码

首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持...

python之生产者消费者模型实现详解

代码及注释如下 #Auther Bob #--*--conding:utf-8 --*-- #生产者消费者模型,这里的例子是这样的,有一个厨师在做包子,有一个顾客在吃包子,有一个服务...

Python中实现参数类型检查的简单方法

Python是一门弱类型语言,很多从C/C++转过来的朋友起初不是很适应。比如,在声明一个函数时,不能指定参数的类型。用C做类比,那就是所有参数都是void*类型!void类型强制转换在...