与Django结合利用模型对上传图片预测的实例详解

yipeiwu_com5年前Python基础

1 预处理

(1)对上传的图片进行预处理成100*100大小

def prepicture(picname):
  img = Image.open('./media/pic/' + picname)
  new_img = img.resize((100, 100), Image.BILINEAR)
  new_img.save(os.path.join('./media/pic/', os.path.basename(picname)))

(2)将图片转化成数组

def read_image2(filename):
  img = Image.open('./media/pic/'+filename).convert('RGB')
  return np.array(img)

2 利用模型进行预测

def testcat(picname):
  # 预处理图片 变成100 x 100
  prepicture(picname)
  x_test = []

  x_test.append(read_image2(picname))

  x_test = np.array(x_test)

  x_test = x_test.astype('float32')
  x_test /= 255

  keras.backend.clear_session() #清理session反复识别注意
  model = Sequential()
  model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
  model.add(Conv2D(32, (3, 3), activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.25))

  model.add(Conv2D(64, (3, 3), activation='relu'))
  model.add(Conv2D(64, (3, 3), activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.25))

  model.add(Flatten())
  model.add(Dense(256, activation='relu'))
  model.add(Dropout(0.5))
  model.add(Dense(4, activation='softmax'))

  sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
  model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])


  model.load_weights('./cat/cat_weights.h5')
  classes = model.predict_classes(x_test)[0]
  # target = ['布偶猫', '孟买猫', '暹罗猫', '英国短毛猫']
  # print(target[classes])
  return classes

3 与Django结合

在views中调用模型进行图片分类

def catinfo(request):
  if request.method == "POST":
    f1 = request.FILES['pic1']
    # 用于识别
    fname = '%s/pic/%s' % (settings.MEDIA_ROOT, f1.name)
    with open(fname, 'wb') as pic:
      for c in f1.chunks():
        pic.write(c)
    # 用于显示
    fname1 = './static/img/%s' % f1.name
    with open(fname1, 'wb') as pic:
      for c in f1.chunks():
        pic.write(c)

    num = testcat(f1.name)
    # 有的数据库id从1开始这样就会报错
    # 因此原本数据库中的id=0被系统改为id=4
    # 遇到这样的问题就加上
    # if(num == 0):
    #  num = 4 
    # 通过id获取猫的信息
    name = models.Catinfo.objects.get(id = num)
    return render(request, 'info.html', {'nameinfo': name.nameinfo, 'feature': name.feature, 'livemethod': name.livemethod, 'feednn': name.feednn, 'feedmethod': name.feedmethod, 'picname': f1.name})
  else:
    return HttpResponse("上传失败!")

以上这篇与Django结合利用模型对上传图片预测的实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python读写二进制文件的方法

本文实例讲述了python读写二进制文件的方法。分享给大家供大家参考。具体如下: 初学python,现在要读一个二进制文件,查找doc只发现 file提供了一个read和write函数,...

Python中的字符串替换操作示例

字符串的替换(interpolation), 可以使用string.Template, 也可以使用标准字符串的拼接. string.Template标示替换的字符, 使用"$"符号, 或...

Python实现多进程共享数据的方法分析

本文实例讲述了Python实现多进程共享数据的方法。分享给大家供大家参考,具体如下: 示例一: # -*- coding:utf-8 -*- from multiprocessing...

python计算程序开始到程序结束的运行时间和程序运行的CPU时间

执行时间 方法1复制代码 代码如下:import datetimestarttime = datetime.datetime.now()#long runningendtime = da...

对PyQt5中树结构的实现方法详解

对PyQt5中树结构的实现方法详解

树的实质是很多条数据按照一定的内在关系,分层级显示出来。因此每一条数据包括数据项和相互关系。数据项就对应了树中的column,而相互关系对应的是应该显示在哪一个条目下。 PyQt5中,树...