pandas 对日期类型数据的处理方法详解

yipeiwu_com6年前Python基础

pandas 的日期/时间类型有如下几种:

Concept Scalar Class Array Class pandas Data Type Primary Creation Method
Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range
Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_timedelta or timedelta_range
Time spans Period PeriodIndex period[freq] Period or period_range
Date offsets DateOffset None None DateOffset


本文介绍在处理时点数 (point in time) 一些常用的处理方法,仍然以上一篇的示例数据为例进行讲解。pandas 用 Timestamp 表示时点数,在大多数情况下和 python 的 datetime 类型的使用方法是通用的。

首先获取数据,并且将 DataFrame 的 date 列转换成 datetime 类型:

df1 = pd.read_csv('https://raw.githubusercontent.com/stonewm/python-practice-projects/master/pandas%20sample%20data/sample-salesv3.csv')
df1['date'] = pd.to_datetime(df1['date']) # convert date column to datetime
df1.head()

也可以在 read_csv() 方法中,通过 parse_dates 参数直接将某些列转换成 datetime64 类型:

df1 = pd.read_csv('sample-salesv3.csv', parse_dates=['date'])

我们据此销售数据,按月份、按季度统计 sku 的销售金额。
pandas 的 pandas.Series.dt 可以获得日期/时间类型的相关信息。比如

df1['date'].dt.year
df1['date'].dt.month
df1['date'].dt.quarter

但这些类型返回值为 int 类型,作为统计的字段,我们更希望是 2014-04 这样的格式,有两个方法:

# 方法 1
df1['year_month'] = df1['date'].apply(lambda x : x.strftime('%Y-%m'))

第二种方法:

df1['period'] = df1['date'].dt.to_period('M')

第二种方法使用起来更加简单,参数 M 表示月份,Q 表示季度,A 表示年度,D 表示按天,这几个参数比较常用。
新增了一列之后,做出数据透视表:

import numpy as np
pivot = pd.pivot_table(df1, index=['sku'], columns=['period'], values=['ext price'], aggfunc=np.sum)
pivot.head()

再做一个按季度统计的数据透视表:

df1['quarter'] = df1['date'].dt.to_period('Q')
quarter_pivot = pd.pivot_table(df1, index=['sku'], columns=['quarter'], values=['ext price'], aggfunc=np.sum)

参考

Time Series / Date functionality

Extracting just Month and Year from Pandas Datetime column

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Windows 64位下python3安装nltk模块

Windows 64位下python3安装nltk模块

在网上找了各种安装教程,都没有在python3下安装nltk,于是我自己尝试着安装,算是成功了 1、首先,假设你的python3已经安装好,并且安装了numpy,matplotlib,p...

详解用python实现简单的遗传算法

详解用python实现简单的遗传算法

今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。 首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法...

pytorch构建多模型实例

pytorch构建双模型 第一部分:构建"se_resnet152","DPN92()"双模型 import numpy as np from functools import pa...

解决python3在anaconda下安装caffe失败的问题

Python 跟 Python3 完全就是两种语言 1、 import caffe FAILED  环境为 Ubuntu 16 cuda 8.0 NVIDIA 361.77...

对python多线程SSH登录并发脚本详解

对python多线程SSH登录并发脚本详解

测试系统中有一项记录ssh登录日志,需要对此进行并发压力测试。 于是用多线程进行python并发记录 因为需要安装的一些依赖和模块比较麻烦,脚本完成后再用pyinstaller打成exe...