python读取大文件越来越慢的原因与解决

yipeiwu_com5年前Python基础

背景:

今天同事写代码,用python读取一个四五百兆的文件,然后做一串逻辑上很直观的处理。结果处理了一天还没有出来结果。问题出在哪里呢?

解决:

1. 同事打印了在不同时间点的时间,在需要的地方插入如下代码:

print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) 

发现一个规律,执行速度到后面时间越来越长,也就是处理速度越来越慢。

2. 为什么会越来越慢呢?

1)可能原因1,GC 的问题,有篇文章里面写,python list append 的时候会越来越慢,解决方案是禁止GC:

使用 gc.disable()和gc.enable()

 2)改完上面,仍然不行,然后看到一篇文章里面写,可能是因为 git 导致的,因为append 的时候 git 会不断同步,会出问题,于是删除 .git 文件夹,结果还是不行。

3)继续查询,发下一个及其有可能出问题的地方。dict 的 in dict.key(),判断 key 是否在 dict 里面,这个的效率是非常低的。看到一篇文章比较了效率:

          ① 使用  in dict.keys() 效率:

          ② 使用 has_key()  效率:


发现 has_key() 效率比较稳定。于是修改,问题解决。

后话:

最初的时候,的确是使用 has_key(), 结果后面上传代码的时候,公司代码检查过不了,提示不能使用这个函数,只能改成 in dict.key() 这种方式,为什么公司不让这么传呢?经过一番百度,发现原因所在:在 python3 中,直接将 has_key() 函数给删除了,所以禁止使用。那禁止了该怎么办呢?原来 python 中 in 很智能,能自动判断 key 是否在字典中存在。所以最正规的做法不是 has_key(),   更不是 in dict.keys(), 而是 in dict.  判断 key 在 map 中,千万别用 in dict.keys() !!!

附录:

in、 in dict.keys()、 has_key() 方法实战对比:

>>> a = {'name':"tom", 'age':10, 'Tel':110}
>>> a
{'age': 10, 'Tel': 110, 'name': 'tom'}
>>> print 'age' in a
True
>>> print 'age' in a.keys()
True
>>>
>>> print a.has_key("age")
True

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。

参考资料:

https://www.douban.com/group/topic/44472300/

http://www.it1352.com/225441.html

/post/145424.htm

相关文章

python 获取sqlite3数据库的表名和表字段名的实例

Python中对sqlite3数据库进行操作时,经常需要用到字段名,然而对于sqlite使用select语句并不能象MySql等数据库一样返回带字段名的字典数据集。特别是对于一个不熟悉的...

Python实现动态加载模块、类、函数的方法分析

本文实例讲述了Python实现动态加载模块、类、函数的方法。分享给大家供大家参考,具体如下: 动态加载模块: 方式1:系统函数__import__() 方式2:imp, import...

Python基于sklearn库的分类算法简单应用示例

本文实例讲述了Python基于sklearn库的分类算法简单应用。分享给大家供大家参考,具体如下: scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。...

Python中的类与对象之描述符详解

描述符(Descriptors)是Python语言中一个深奥但却重要的一部分。它们广泛应用于Python语言的内核,熟练掌握描述符将会为Python程序员的工具箱添加一个额外的技巧。为了...

浅谈Python中range和xrange的区别

range()是Python的内置函数,用于创建整数的列表,可以生成递增或者递减的数列。xrange也有相同的功能, 今天来看下它们之间的不同。 range 函数说明:...