Python如何使用k-means方法将列表中相似的句子归类

yipeiwu_com5年前Python基础

前言

由于今年暑假在学习一些自然语言处理的东西,发现网上对k-means的讲解不是很清楚,网上大多数代码只是将聚类结果以图片的形式呈现,而不是将聚类的结果表示出来,于是我将老师给的代码和网上的代码结合了一下,由于网上有许多关于k-means算法基础知识的讲解,因此我在这里就不多讲解了,想了解详细内容的,大家可以自行百度,在这里我只把我的代码给大家展示一下。

k-means方法的缺点是k值需要自己找,大家可以多换换k值,看看结果会有什么不同

代码

# coding: utf-8
import sys
import math
import re
import docx
from sklearn.cluster import AffinityPropagation
import nltk
from nltk.corpus import wordnet as wn
from nltk.collocations import *
import numpy as np
reload(sys)
sys.setdefaultencoding('utf8')
from sklearn.feature_extraction.text import CountVectorizer
#要聚类的数据
corpus = [
 'This is the first document.',#0
 'This is the second second document.',#1
 'And the third one.',#2
 'Is this the first document?',#3
 'I like reading',#4
 'do you like reading?',#5
 'how funny you are! ',#6
 'he is a good guy',#7
 'she is a beautiful girl',#8
 'who am i',#9
 'i like writing',#10
 'And the first one',#11
 'do you play basketball',#12
]
#将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer()
#计算个词语出现的次数
X = vectorizer.fit_transform(corpus)#获取词袋中所有文本关键词
word = vectorizer.get_feature_names()
#类调用
transformer = TfidfTransformer()
#将词频矩阵X统计成TF-IDF值
tfidf = transformer.fit_transform(X)
#查看数据结构 tfidf[i][j]表示i类文本中的tf-idf权重
weight = tfidf.toarray()
# print weight
# kmeans聚类
from sklearn.cluster import KMeans
# print data
kmeans = KMeans(n_clusters=5, random_state=0).fit(weight)#k值可以自己设置,不一定是五类
# print kmeans
centroid_list = kmeans.cluster_centers_
labels = kmeans.labels_
n_clusters_ = len(centroid_list)
# print "cluster centroids:",centroid_list
print labels
max_centroid = 0
max_cluster_id = 0
cluster_menmbers_list = []
for i in range(0, n_clusters_):
 menmbers_list = []
 for j in range(0, len(labels)):
  if labels[j] == i:
   menmbers_list.append(j)
 cluster_menmbers_list.append(menmbers_list)
# print cluster_menmbers_list

#聚类结果
for i in range(0,len(cluster_menmbers_list)):
 print '第' + str(i) + '类' + '---------------------'
 for j in range(0,len(cluster_menmbers_list[i])):
  a = cluster_menmbers_list[i][j]
  print corpus[a]

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现RGB与HSI颜色空间的互换方式

Python实现RGB与HSI颜色空间的互换方式

概要 这是这学期数字图像处理课的第一份作业好久没懂python手都快生了,调了好久才搞出来。 HSI颜色模型是一个满足计算机数字化颜色管理需要的高度抽象模拟的数学模型。HIS模型是从人的...

Python运维之获取系统CPU信息的实现方法

使用Python进行运维工作的时候有时候需要获取CPU的信息,这在psutil模块库的帮助下非常容易实现。 常见的CPU信息有以下几种: 1,用户时间以及百分比; 2,系统时间以及百分比...

使用python实现unix2dos和dos2unix命令的例子

由于工作电脑网络限制无法安装unix2dos和dos2unix命令转换文件,自己实现一个 直接上代码,保存为python文件如unix2dos.py然后使用命令 unix2dos.p...

Python装饰器模式定义与用法分析

Python装饰器模式定义与用法分析

本文实例讲述了Python装饰器模式定义与用法。分享给大家供大家参考,具体如下: 装饰器模式定义:动态地给一个对象添加一些额外的职责。 在Python中Decorator mode可以按...

python 3.6.4 安装配置方法图文教程

python 3.6.4 安装配置方法图文教程

今天补一下关于如何安装Python的操作步骤: 我的系统是我win系统 64 位 1.第一步先去python的官方网站下载python的安装包:地址 根据自己的系统选择对应的...