Python如何使用k-means方法将列表中相似的句子归类

yipeiwu_com5年前Python基础

前言

由于今年暑假在学习一些自然语言处理的东西,发现网上对k-means的讲解不是很清楚,网上大多数代码只是将聚类结果以图片的形式呈现,而不是将聚类的结果表示出来,于是我将老师给的代码和网上的代码结合了一下,由于网上有许多关于k-means算法基础知识的讲解,因此我在这里就不多讲解了,想了解详细内容的,大家可以自行百度,在这里我只把我的代码给大家展示一下。

k-means方法的缺点是k值需要自己找,大家可以多换换k值,看看结果会有什么不同

代码

# coding: utf-8
import sys
import math
import re
import docx
from sklearn.cluster import AffinityPropagation
import nltk
from nltk.corpus import wordnet as wn
from nltk.collocations import *
import numpy as np
reload(sys)
sys.setdefaultencoding('utf8')
from sklearn.feature_extraction.text import CountVectorizer
#要聚类的数据
corpus = [
 'This is the first document.',#0
 'This is the second second document.',#1
 'And the third one.',#2
 'Is this the first document?',#3
 'I like reading',#4
 'do you like reading?',#5
 'how funny you are! ',#6
 'he is a good guy',#7
 'she is a beautiful girl',#8
 'who am i',#9
 'i like writing',#10
 'And the first one',#11
 'do you play basketball',#12
]
#将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer()
#计算个词语出现的次数
X = vectorizer.fit_transform(corpus)#获取词袋中所有文本关键词
word = vectorizer.get_feature_names()
#类调用
transformer = TfidfTransformer()
#将词频矩阵X统计成TF-IDF值
tfidf = transformer.fit_transform(X)
#查看数据结构 tfidf[i][j]表示i类文本中的tf-idf权重
weight = tfidf.toarray()
# print weight
# kmeans聚类
from sklearn.cluster import KMeans
# print data
kmeans = KMeans(n_clusters=5, random_state=0).fit(weight)#k值可以自己设置,不一定是五类
# print kmeans
centroid_list = kmeans.cluster_centers_
labels = kmeans.labels_
n_clusters_ = len(centroid_list)
# print "cluster centroids:",centroid_list
print labels
max_centroid = 0
max_cluster_id = 0
cluster_menmbers_list = []
for i in range(0, n_clusters_):
 menmbers_list = []
 for j in range(0, len(labels)):
  if labels[j] == i:
   menmbers_list.append(j)
 cluster_menmbers_list.append(menmbers_list)
# print cluster_menmbers_list

#聚类结果
for i in range(0,len(cluster_menmbers_list)):
 print '第' + str(i) + '类' + '---------------------'
 for j in range(0,len(cluster_menmbers_list[i])):
  a = cluster_menmbers_list[i][j]
  print corpus[a]

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python读取一个目录下所有目录和文件的方法

本文实例讲述了Python读取一个目录下所有目录和文件的方法。分享给大家供大家参考,具体如下: 这里介绍的是刚学python时的一个读取目录的列子,给大家分享下: #!/usr/bi...

python 求某条线上特定x值或y值的点坐标方法

问题可以转换为:求一条垂直于x轴或平行于y轴的直线与该线的交点 import numpy as np import shapely.geometry as SG #某条线 li...

详解Python中find()方法的使用

 find()方法判断字符串str,如果起始索引beg和结束end索引能找到在字符串或字符串的一个子串中。 语法 以下是find()方法的语法: str.find(str,...

用Python做的数学四则运算_算术口算练习程序(后添加减乘除)

最近着迷上了 Python 用Python给小宝做的数学算数口算练习程序(2015年1月添加四则运算)! 给小宝做的口算游戏: #用Python给小宝做的数学算数口算练习程序(201...

PyQt5下拉式复选框QComboCheckBox的实例

PyQt5下拉式复选框QComboCheckBox的实例

笔者在用PyQt5写GUI时碰到了需要使用下拉式复选框的情况,但是PyQt5中没有相应的组件,而网上找到的方法大多是qt使用的,所以不能直接拿来用。 没办法,在这种让人无奈的情况下,笔者...