python matplotlib库直方图绘制详解

yipeiwu_com6年前Python基础

例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?

一些概念及问题:

  • 把数据分为多少组进行统计
  • 组数要适当,太少会有较大的统计误差,太多规律不明显
  • 组数:将数据分组,共分为多少组
  • 组距:指每个小组的两个端点的距离
  • 组数:极差 / 组距,也就是 (最大值-最小值)/ 组距  
  • 频数分布直方图与频率分布直方图,hist()方法需增加参数normed
  • 注意:一般来说能够使用plt.hist()方法绘制的直方图是那些没有统计过的数据,如果是统计过的数据为了能绘制像直方图一样的效果,可以使用条形图plt.bar()方法来绘制,不过中间过程就会稍微麻烦一些
from matplotlib import pyplot as plt
import matplotlib
font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文

a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
   101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,
   95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,
   123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,
   132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,
   123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,
   115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,
   106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,
   130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,
   106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,
   133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
# 计算组数
d = 3 # 组距
num_bins = (max(a) - min(a)) // d # 计算组距的公式
plt.figure(figsize=(20, 8), dpi=80) # 设置图片大小
plt.hist(a, num_bins) # 加上normed=True属性之后变为频率分布直方图
# 设置x轴的刻度
plt.xticks(range(min(a), max(a)+d, d))
plt.grid(alpha=0.3)
plt.show()

效果图

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python多线程实现同步的四种方式

临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。 锁机制 thre...

python采用getopt解析命令行输入参数实例

本文实例讲述了python采用getopt解析命令行输入参数的方法,分享给大家供大家参考。 具体实例代码如下: import getopt import sys config...

Python获取基金网站网页内容、使用BeautifulSoup库分析html操作示例

本文实例讲述了Python获取基金网站网页内容、使用BeautifulSoup库分析html操作。分享给大家供大家参考,具体如下: 利用 urllib包 获取网页内容 #引入包 fr...

实例探究Python以并发方式编写高性能端口扫描器的方法

关于端口扫描器 端口扫描工具(Port Scanner)指用于探测服务器或主机开放端口情况的工具。常被计算机管理员用于确认安全策略,同时被攻击者用于识别目标主机上的可运作的网络服务。 端...

python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

在处理图像的时候经常是读取图片以后把图片转换为灰度图。作为一个刚入坑的小白,我在这篇博客记录了四种处理的方法。 首先导入包: import numpy as np import cv...